
Practical Dependent Type Checking using Twin Types
Víctor López Juan

Chalmers University of Technology
Gothenburg, Sweden
victor@lopezjuan.com

Nils Anders Danielsson
University of Gothenburg
Gothenburg, Sweden

nad@cse.gu.se

Abstract
Peoplewriting proofs or programs in dependently typed lan-
guages can omit some function arguments in order to de-
crease the code size and improve readability. Type checking
such a program involves filling in each of these implicit ar-
guments in a type-correct way. This is typically done using
some form of unification.

One approach to unification, taken by Agda, involves
sometimes starting to unify terms before their types are
known to be equal: in some cases one can make progress
on unifying the terms, and then use information gleaned in
this way to unify the types. This flexibility allows Agda to
solve implicit arguments that are not found by several other
systems. However, Agda’s implementation is buggy: some-
times the solutions chosen are ill-typed, which can cause
the type checker to crash.

With Gundry and McBride’s twin variable technique one
can also start to unify terms before their types are known to
be equal, and furthermore this technique is accompanied by
correctness proofs. However, so far this technique has not
been tested in practice as part of a full type checker.

We have reformulated Gundry and McBride’s technique
without twin variables, using only twin types, with the
aim of making the technique easier to implement in exist-
ing type checkers (in particular Agda). We have also intro-
duced a type-agnostic syntactic equality rule that seems to
be useful in practice. The reformulated technique has been
tested in a type checker for a tiny variant of Agda.This type
checker handles at least one example that Coq, Idris, Lean
and Matita cannot handle, and does so in time and space
comparable to that used by Agda. This suggests that the re-
formulated technique is usable in practice.

CCS Concepts: •Theory of computation→Type theory.

Keywords: type checking, unification, dependent types

TyDe ’20, August 23, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in Proceedings of the 5th ACM SIGPLAN International Workshop on Type-
Driven Development (TyDe ’20), August 23, 2020, Virtual Event, USA, https:
//doi.org/10.1145/3406089.3409030.

ACM Reference Format:
Víctor López Juan and Nils Anders Danielsson. 2020. Practical De-
pendent Type Checking using Twin Types. In Proceedings of the
5th ACM SIGPLAN International Workshop on Type-Driven Devel-
opment (TyDe ’20), August 23, 2020, Virtual Event, USA. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3406089.3409030

1 Introduction
Dependent types are the basis of programming lan-
guages/proof assistants such as Agda, Coq, Idris, Lean and
Matita. Such languages typically allow users to omit pieces
of code, like certain function arguments: this can make code
easier to read and write. Type checking such a program in-
cludes finding type-correct terms for the omitted pieces of
code, and this tends to involve solving higher-order unifica-
tion problems, which in general is undecidable [14]. Further-
more, even if one can find all solutions there might not be a
most general one. If a solution which is not a most general
one is picked, then the programmight not have themeaning
that the programmer intended.
Some systems, for instance Coq [33], sometimes solve

constraints even if there is not a most general solution. This
approach can still be predictable, if programmers are famil-
iar with the workings of the unification algorithm. Ziliani
and Sozeau [33] argue that even if there is no most general
solution there could still be a most natural one, but they
also claim that the algorithm used in one version of Coq is
unpredictable, and suggest changes to it.

In another approach solutions are only chosen if they are
unique or most general. This approach is for instance taken
by Agda (ignoring bugs). The approach has the advantage
that one does not need to know details of the unification
algorithm, such as in what order different things are done,
in order to understand a piece of code.Thus there is perhaps
less need to make the unification algorithm predictable to
users. A drawback is that sometimes “natural” solutions are
not found.

In §2.4 we discuss an example, based on “real” code,
which is handled by Agda, but for which Coq, Idris, Lean
and Matita all fail. Agda handles this example because it
can start unifying terms before their types are known to be
equal, and in the case of this example work on the terms
uncovers information which is used to unify the types. Un-
fortunately this part of Agda is buggy [4, 20].

Gundry and McBride’s technique with twin types and
twin variables [13] also makes it possible to start unifying

https://doi.org/10.1145/3406089.3409030
https://doi.org/10.1145/3406089.3409030
https://doi.org/10.1145/3406089.3409030

TyDe ’20, August 23, 2020, Virtual Event, USA Víctor López Juan and Nils Anders Danielsson

terms before their types are known to be equal, and further-
more Gundry presents correctness proofs [12]. However, so
far this technique has not been tested in practice as part of
a full type checker.

We believe that these are our main contributions:
• We present the first implementation of a twin type
approach in a type checker for a dependently typed
language (we adapted a pre-existing type checker for
a tiny variant of Agda, called Tog [24]).

• We use a reformulation of the approach of Gundry
andMcBride without twin variables.This might make
the approach a little easier to adopt in existing type
checkers that do not already use twin variables, be-
cause there might be less need to modify the grammar
of terms or the algorithms that manipulate them.

• The approach can handle at least one example that is
handled by Agda (2.6.1) but not by Coq (8.11.0), Idris
(1.3.2), Lean (3.4.2) or Matita (0.99.3); see §2.4.

• A small case study (§4) based on “real” code that a
previous version of Agda struggled with suggests that
the approach might be feasible in practice: the perfor-
mance is similar to that of Agda 2.6.1.

• We introduce a notion of heterogeneous equality
(§3.2) that enables a type-agnostic syntactic equality
rule (Rule Schema 1). Benchmarks suggest that use of
this rule can, at least in some cases, improve perfor-
mance (§4.2).

The text is based on the first author’s forthcoming licen-
tiate thesis [18]. The thesis contains detailed proofs of the
main results stated in this paper. However, note that the
type theory uses a type-in-type axiom. The results have
been proved under the assumption that certain properties
hold, and these properties may not hold for the type the-
ory as given, with the type-in-type axiom. Furthermore the
proofs are not machine-checked, and due to their size we
acknowledge that it is likely that they contain errors. For
these reasons we do not claim that the presented approach
is correct. We have also not proved that the program used
for the benchmarks implements the theory correctly.

2 Unification
Let us begin by discussing our approach to unification in
more detail. For the examples in this section we use a syntax
inspired by those of Agda and Haskell.

2.1 Unique Solutions
As an example, consider the function replicate, which re-
turns a vector (a list of fixed length) repeating an element:

replicate ∶ {𝑛 ∶ Nat} → Int → Vec 𝑛 Int

The first (implicit) argument to replicate determines the
length of the resulting vector: replicate {𝑛 = 5} (−4) gives

[−4, −4, −4, −4, −4]. If the argument is not given explic-
itly, then an attempt is made to infer it from the context:
replicate (−4) ∶ Vec 3 Int gives [−4, −4, −4].

In some cases it may not be possible to determine
the length uniquely. Let us assume that there is a func-
tion rotate90, which rotates a vector 90 degrees clockwise
(rotate90 [1, 2] = [−2, 1]), and a command print, which
prints a vector, and consider the program main:

rotate90 ∶ Vec 2 Int → Vec 2 Int
print ∶ {𝑛 ∶ Nat} → Vec 𝑛 Int → IO ()
main ∶ IO ()
main = do
print (rotate90 (replicate 1))
print (replicate 6)

It is easy to figure out that the vector returned by replicate 1
should have length 2, and thus print (rotate90 (replicate 1))
outputs [−1, 1]. However, there is nothing that constrains
the length of the vector returned by replicate 6.
For underspecified programs of this kind we do not want

the type checker to fill in arbitrary type-correct terms: we
do not want it to make unforced choices on behalf of the
programmer. This applies not only to programs, but also
to statements of theorems, and—in proof-relevant settings—
bodies of proofs. (We do not claim that any proof assistant
in use today would make an unforced choice in this partic-
ular case, this is a contrived example used to illustrate our
point.)

2.2 Constraints and Solutions
In our development all judgments about terms and types
are formulated with respect to a signature. A signature Σ
contains atom declarations (𝕒 ∶ 𝐴), corresponding to Agda
postulates, andmetavariable declarations, where ametavari-
able is either just declared (𝛼 ∶ 𝐴), or declared and instanti-
ated (𝛼 ≔ 𝑡 ∶ 𝐴):

Σ ∶∶= · | Σ, 𝕒 ∶ 𝐴 | Σ, 𝛼 ∶ 𝐴 | Σ, 𝛼 ≔ 𝑡 ∶ 𝐴
Metavariables can be introduced by the type checker (omit-
ted implicit arguments are often turned into metavariables),
or by the unifier (when it “kills” metavariable arguments,
see §3.3.2).
According to Mazzoli and Abel [23] dependent type

checking with metavariables can be reduced to solving
a set of higher-order unification constraints of the form
Γ𝑖 ⊢ 𝑡𝑖 ∶ 𝐴𝑖 ≡? 𝑢𝑖 ∶ 𝐵𝑖 with a common signature Σ, where
all the constraints are well-typed with respect to Σ:
Σ; Γ𝑖 ⊢ 𝑡𝑖 ∶ 𝐴𝑖 and Σ; Γ𝑖 ⊢ 𝑢𝑖 ∶ 𝐵𝑖.

A solution to a higher-order unification problem is an
assignment of terms of appropriate types to all the unin-
stantiated metavariables in Σ, yielding a signature Σ′ for
which all the constraints hold (that is, for each constraint
Γ𝑖 ⊢ 𝑡𝑖 ∶ 𝐴𝑖 ≡? 𝑢𝑖 ∶ 𝐵𝑖 wehaveΣ′; Γ𝑖 ⊢ 𝐴𝑖 ≡ 𝐵𝑖 type and

Practical Dependent Type Checking using Twin Types TyDe ’20, August 23, 2020, Virtual Event, USA

Σ′; Γ𝑖 ⊢ 𝑡𝑖 ≡ 𝑢𝑖 ∶ 𝐴𝑖). Σ′ may contain additional metavari-
ables as long as they are instantiated.

Let us now discuss two goals for our unification algo-
rithm: we want to ensure that the algorithm can apply a
wide range of techniques (for instance out of order unifi-
cation), but at the same time we want to avoid producing
solutions that are ill-typed.

2.3 Goal #1: Well-Typedness
As mentioned above metavariable solutions should be well-
typed. However, we do not want to repeatedly check that
all terms are well-typed. Instead we assume that we start
with a well-formed signature and well-formed constraints,
and aim to maintain well-typedness as an invariant of the
unification algorithm.

The current implementation of Agda sometimes con-
structs ill-typed solutions, which can lead to crashes. The
following example is taken from a currently open bug re-
port [20]:
Example 2.1. Consider the following two functions:

𝐹 ∶ Bool → Set
𝐹 false = Bool
𝐹 true = Nat

𝑓 ∶ (𝑥 ∶ Bool) → 𝐹  𝑥 → Nat
𝑓 false false = 0
𝑓 false true = 1
𝑓 true 𝑥 = 2

Using these functions we can form the following con-
straints, which are well-formed with respect to the
signature 𝔻 ∶ Nat → Set, 𝛼 ∶ Nat → Set, 𝛽 ∶ Nat → Bool:

· ⊢ (𝑥 ∶ Nat) → 𝛼 𝑥 ∶ Set ≡?

(𝑥 ∶ 𝐹  (𝛽 0)) → 𝔻 (𝑓 (𝛽 0) 𝑥) ∶ Set
· ⊢ 𝛽 ∶ Nat → Bool ≡? 𝜆𝑥.false ∶ Nat → Bool ■

When tackling the constraints in Example 2.1 Agda first
makes 𝛼 𝑥 and 𝔻 (𝑓 (𝛽 0) 𝑥) equal by instantiating 𝛼 (of
typeNat → Set) to𝜆𝑥.𝔻 (𝑓 (𝛽 0) 𝑥) (of type𝐹  (𝛽 0) → Set).
Then it solves the second constraint by instantiating 𝛽 to
𝜆𝑥.false, thus rendering the instantiation of 𝛼 ill-typed. The
end result is the ill-typed solution 𝔻 ∶ Nat → Set, 𝛼 ≔
𝜆𝑥.𝔻 (𝑓 false 𝑥) ∶ Nat → Set, 𝛽 ≔ 𝜆𝑥.false ∶ Bool → Set.

Note that Agda unifies 𝛼 𝑥 and 𝔻 (𝑓 (𝛽 0) 𝑥) without
knowing that the terms have the same type. Another ap-
proach is to only unify terms with equal types. However,
this could be restrictive in practice, as we explain in the fol-
lowing section.

2.4 Goal #2: Out of Order Unification
McBride [25] describes a method for representing depen-
dently typed languages inside dependently typed languages.
We have used some programs based on this method in our
benchmarks (see §4.2). Some of these programs yield uni-
fication constraints in which metavariables appear both in
the term and the type. The following example is a reduced
version of one of these constraints:

Example 2.2. BoolOp is a type of optional booleans, and
get is a function that returns the boolean, if any:

data BoolOp ∶ Set where
None ∶ BoolOp
Some ∶ Bool → BoolOp

get ∶ BoolOp → Bool
get None = true
get (Some 𝑥) = 𝑥

The following constraint is well-formed with respect to the
signature Σ ≝ 𝔽 ∶ Bool → Set, 𝛼 ∶ Bool → BoolOp:

𝑥 ∶ Bool ⊢𝜆𝑦.None ∶ 𝔽 (get (𝛼 𝑥)) → BoolOp ≡?

𝜆𝑦.(𝛼 𝑥) ∶ 𝔽 true → BoolOp ■

Solving the problem in Example 2.2 entails finding a term
𝑡 such that Σ′ ≝ 𝔽 ∶ Bool → Set, 𝛼 ≔ 𝑡 ∶ Bool → BoolOp
is well-formed and the following two equalities hold:

Σ′; 𝑥 ∶ Bool ⊢ 𝔽 (get (𝛼 𝑥)) → BoolOp ≡
𝔽 true → BoolOp ∶ Set (1)

Σ′; 𝑥 ∶ Bool ⊢ (𝜆𝑦.None) ≡
(𝜆𝑦.(𝛼 𝑥)) ∶ 𝔽 (get (𝛼 𝑥)) → BoolOp (2)

The first equality (1) does not contain enough information
to determine 𝑡; both 𝑡 = 𝜆𝑥.None and 𝑡 = 𝜆𝑥.Some true
are possible. The second equality (2) does contain enough
information (the only solution is 𝑡 = 𝜆𝑥.None), but the term
𝜆𝑦.(𝛼 𝑥) is compared at the type 𝔽 (get (𝛼 𝑥)) → BoolOp,
which is not its original one (𝔽 true → BoolOp).

We ported this example to five different proof assistants,
and found that Agda (2.6.1) instantiated 𝛼, but none of Coq
(8.11.0), Idris (1.3.2), Lean (3.4.2), or Matita (0.99.3). Perhaps
the proof assistants that did not instantiate 𝛼 do not unify
terms unless they are known to have the same types.

2.5 Twin Types
Gundry and McBride [13, 12] propose a heterogeneous ap-
proach to unification, in which constraints have two types,
one for each side. They also use twin variables, variables
with two types (̂𝑥 ∶ 𝐴1‡𝐴2), where syntax is used to specify
the type of a specific use of a variable (𝑥́ ∶ 𝐴1 and ̀𝑥 ∶ 𝐴2).
We propose a variant of this approach in which twin types
(𝐴1‡𝐴2) are only used for constraints and twin variables are
not used: the type of each occurrence of a variable is instead
determined by the side it occurs on. If twin types are only
used for constraints, then it might be a little easier to adapt
existing type checkers to use this approach.

In our setting each original well-formed constraint of the
form Γ ⊢ 𝑡 ∶ 𝐴 ≡? 𝑢 ∶ 𝐵 is elaborated into two well-formed
internal constraints, one for the types (Γ‡Γ ⊢ 𝐴 ≅? 𝐵 ∶
Set‡Set) and one for the terms (Γ‡Γ ⊢ 𝑡 ≅? 𝑢 ∶ 𝐴‡𝐵). The
resulting constraints form an internal unification problem.

Definition 2.3 (Internal unification problem). An internal
(unification) problem is of the form Σ; ⃗𝒞, where for each
𝒞 ∈ ⃗𝒞, 𝒞 has the form Γ1‡Γ2 ⊢ 𝑡 ≅? 𝑢 ∶ 𝐴‡𝐵. The problem
is well-formed if the signature is well-formed and, for each

TyDe ’20, August 23, 2020, Virtual Event, USA Víctor López Juan and Nils Anders Danielsson

constraint Γ1‡Γ2 ⊢ 𝑡 ≅? 𝑢 ∶ 𝐴‡𝐵 ∈ ⃗𝒞, Γ1 and Γ2 have the
same length, and we have Σ; Γ1 ⊢ 𝑡 ∶ 𝐴 and Σ; Γ2 ⊢ 𝑢 ∶ 𝐵.

Notation (Twin context). Given two contexts Γ1 = Γ′
1, 𝐴1

and Γ2 = Γ′
2, 𝐴2 of the same length we may write Γ1‡Γ2

as Γ′
1‡Γ′

2, 𝐴1‡𝐴2.

The unification problem in Example 2.2 corresponds to
the well-formed internal problem Σ; 𝒞1, 𝒞2, with 𝒞1 and 𝒞2
defined as follows:

𝒞1 ≝ 𝑥 ∶ Bool‡Bool ⊢ 𝔽 (get (𝛼 𝑥)) → BoolOp ≅?

𝔽 true → BoolOp ∶ Set‡Set
𝒞2 ≝ 𝑥 ∶ Bool‡Bool ⊢ 𝜆𝑦.None ≅? 𝜆𝑦.(𝛼 𝑥) ∶

(𝔽 (get (𝛼 𝑥)) → BoolOp)‡(𝔽 true → BoolOp)
All constraints arewell-formed, so constraint𝒞2 can be tack-
led immediately. If 𝛼 is instantiated with 𝜆𝑦.None, then the
two sides of the constraint become heterogeneously equal, as
defined in §3.2. (This example is discussed further in §3.5.)

3 Dependent Type Checking using Twin
Types

In this section we describe some details of our approach
from a more technical point of view.

3.1 Language
We describe a type theory that is based on our implementa-
tion. It is an intensional type theory with Π-types, Σ-types,
η-equality, metavariables and large elimination from Bool.
The goal is to have a theory with a small number of con-
structs which still gives rise to some of the type-checking
problems that occur in a full-fledged proof assistant.

For simplicity we use a single universe Set with a type-in-
type axiom. Below we state some properties without proofs
(e.g. Statement 1). Some of these properties may not hold in
the presence of the type-in-type axiom, but we hope they
would hold in a properly stratified version of the theory.

In order to stay close to our implementation we represent
variables using de Bruijn indices (0, 1, 2, …). Indices are ma-
nipulated using weakenings (𝑡(+𝑛), increment all indices by
𝑛) and renamings (𝑡[⃗𝑥 ↦ ⃗𝑦], replace each variable in ⃗𝑥 with
the corresponding variable in ⃗𝑦, where ⃗𝑥 and ⃗𝑦 are lists of
indices of the same length).

Terms are in β-normal form (following the implemen-
tation of Agda). We use hereditary substitution (𝑡[𝑢/𝑥])
and application (𝑡 @ ⃗𝑒) operations that preserve the in-
variant that terms are in β-normal form [32, 6]. For in-
stance, (𝑥 𝑦1 𝑦2)[𝜆𝑧1.𝜆𝑧2.𝑧1/𝑥] ≝ (𝜆𝑧1.𝜆𝑧2.𝑧1) @ 𝑦1 𝑦2 ≝
(𝜆𝑧2.𝑧1)[𝑦1/𝑧1] @ 𝑦2 ≝ (𝜆𝑧2.𝑦1) @ 𝑦2 ≝ 𝑦1[𝑦2/𝑧2] ≝ 𝑦2.
Hereditary substitution and application are deterministic,
but are not guaranteed to terminate due to the type-in-type
axiom. When we write 𝑡[𝑢/𝑥] or 𝑡 @ ⃗𝑒 we implicitly as-
sume that the process terminates for that particular choice
of terms. The notation 𝑡[𝑢] is shorthand for 𝑡[𝑢/0].

Definition 3.1 (Signature). The following rules define (in-
ductively) when a signature is well-formed:

empty· sig

Σ sig 𝕒 is fresh in Σ Σ; · ⊢ 𝐴 type
atom-declΣ, 𝕒 ∶ 𝐴 sig

Σ sig 𝛼 is fresh in Σ Σ; · ⊢ 𝐴 type
meta-declΣ, 𝛼 ∶ 𝐴 sig

Σ, 𝛼 ∶ 𝐴 sig Σ; · ⊢ 𝑡 ∶ 𝐴
meta-instΣ, 𝛼 ≔ 𝑡 ∶ 𝐴 sig

The syntaxes of contexts and terms are not given explic-
itly, but they can be read off from the typing rules.

Definition 3.2 (Context). Σ ⊢ Γ ctx means that the con-
text Γ is well-formed with respect to the signature Σ:

Σ sig
Σ ⊢ · ctx

Σ ⊢ Γ ctx Σ; Γ ⊢ 𝐴 type
Σ ⊢ Γ, 𝐴 ctx

Definition 3.3 (Term and neutral term). Σ; Γ ⊢ 𝑡 ∶ 𝐴
means that the term 𝑡 has type 𝐴 in context Γ and signa-
ture Σ, see Figure 1. We use 𝑡, 𝑢, …, 𝐴, 𝐵‚… or 𝑓 to denote
terms. Terms of the form ℎ  ⃗𝑒, where the head ℎ is of the form
𝑛, 𝕒, 𝛼 or if and each eliminator in ⃗𝑒 is of the form 𝑡, .𝜋1 or
.𝜋2, are called neutral terms, and denoted by 𝑓 .

Notation. We may use (𝑥 ∶ 𝐴) → 𝐵 or 𝐴 → 𝐵 instead of
Π𝐴𝐵, and (𝑥 ∶ 𝐴) × 𝐵 or 𝐴 × 𝐵 instead of Σ𝐴𝐵.

Definition 3.4 (Judgmental equality of terms, types and
contexts). Σ; Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴 means that the terms 𝑡 and
𝑢 are judgmentally equal at type 𝐴. Some, but not all, rules
of this relation are given in Figure 2.

Statement 1 (Piecewise well-formedness of judgments). If
Σ; Γ ⊢ 𝑡 ∶ 𝐴, then Σ ⊢ Γ ctx and Σ sig. If Σ; Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴,
then Σ; Γ ⊢ 𝑡 ∶ 𝐴 and Σ; Γ ⊢ 𝑢 ∶ 𝐴.

Statement 2. The relations Σ ⊢ _ ≡ _ ctx, Σ; Γ ⊢ _ ≡
_ type and Σ; Γ ⊢ _ ≡ _ ∶ 𝐴 are reflexive, symmet-
ric and transitive with respect to the sets {Γ | Σ ⊢ Γ ctx},
{𝐴 | Σ; Γ ⊢ 𝐴 type} and {𝑡 | Σ; Γ ⊢ 𝑡 ∶ 𝐴}, respectively.

Notation. We use fv(𝑡) to denote the set of free variables
of 𝑡 (e.g. fv(𝜆.(3 0)) = {2}). Similarly fv(Δ ⊢ 𝑡 ∶ 𝑈) is
used to denote the set of free variables of Δ ⊢ 𝑡 ∶ 𝑈 (e.g.
fv(𝔸, 𝔹 3 ⊢ 9 1 ∶ ℂ) = {7, 2}).

Notation. We use metas(𝑡) to denote the set of metavari-
ables occurring in a term (e.g. metas(𝜆.𝜆.(𝛼 𝕓)) = {𝛼}),
consts(𝑡) to denote the set of atoms and metavariables
(e.g. consts(𝜆.𝜆.(𝛼 𝕓)) = {𝛼, 𝕓}), and we let decls(Σ) =
{𝕒 | 𝕒 ∶ 𝐴 ∈ Σ} ∪ {𝛼 | 𝛼 ∶ 𝐴 ∈ Σ ∨ 𝛼 ≔ 𝑡 ∶ 𝐴 ∈ Σ}.

Practical Dependent Type Checking using Twin Types TyDe ’20, August 23, 2020, Virtual Event, USA

Σ ⊢ Γ ctx boolΣ; Γ ⊢ Bool ∶ Set
Σ; Γ ⊢ 𝐴 ∶ Set Σ; Γ, 𝐴 ⊢ 𝐵 ∶ Set piΣ; Γ ⊢ Π𝐴𝐵 ∶ Set

Σ; Γ ⊢ 𝐴 ∶ Set Σ; Γ, 𝐴 ⊢ 𝐵 ∶ Set sigmaΣ; Γ ⊢ Σ𝐴𝐵 ∶ Set
Σ ⊢ Γ ctx setΣ; Γ ⊢ Set ∶ Set

Σ; Γ ⊢ 𝐴 ∶ Set typeΣ; Γ ⊢ 𝐴 type

Σ ⊢ Γ ctx tRueΣ; Γ ⊢ true ∶ Bool
Σ ⊢ Γ ctx falseΣ; Γ ⊢ false ∶ Bool

Σ; Γ, 𝐴 ⊢ 𝑡 ∶ 𝐵 absΣ; Γ ⊢ 𝜆.𝑡 ∶ Π𝐴𝐵
Σ; Γ ⊢ 𝑡 ∶ 𝐴 Σ; Γ, 𝐴 ⊢ 𝐵 type Σ; Γ ⊢ 𝑢 ∶ 𝐵[𝑡]

paiRΣ; Γ ⊢ ⟨𝑡, 𝑢⟩ ∶ Σ𝐴𝐵
Σ; Γ ⊢ 𝑡 ∶ 𝐴 Σ; Γ ⊢ 𝐴 ≡ 𝐵 type convΣ; Γ ⊢ 𝑡 ∶ 𝐵

Σ ⊢ Γ ctx Γ = Γ1, 𝐴, Γ2 𝑛 = |Γ2|
vaR

Σ; Γ ⊢ 𝑛 ⇒ 𝐴(+(𝑛+1))
Σ ⊢ Γ ctx 𝕒 ∶ 𝐴 ∈ Σ atomΣ; Γ ⊢ 𝕒 ⇒ 𝐴

Σ ⊢ Γ ctx 𝛼 ∶ 𝐴 ∈ Σ meta1Σ; Γ ⊢ 𝛼 ⇒ 𝐴
Σ ⊢ Γ ctx 𝛼 ≔ 𝑡 ∶ 𝐴 ∈ Σ meta2Σ; Γ ⊢ 𝛼 ⇒ 𝐴

Σ ⊢ Γ ctx ifΣ; Γ ⊢ if ⇒ 𝑇if

Σ; Γ ⊢ ℎ ⇒ 𝐴 headΣ; Γ ⊢ ℎ ∶ 𝐴
Σ; Γ ⊢ 𝑓 ∶ Σ𝐴𝐵 pRoj1Σ; Γ ⊢ 𝑓 .𝜋1 ∶ 𝐴

Σ; Γ ⊢ 𝑓 ∶ Σ𝐴𝐵 pRoj2Σ; Γ ⊢ 𝑓 .𝜋2 ∶ 𝐵[𝑓 .𝜋1]
Σ; Γ ⊢ 𝑓 ∶ Π𝐴𝐵 Σ; Γ ⊢ 𝑡 ∶ 𝐴 appΣ; Γ ⊢ 𝑓 𝑡 ∶ 𝐵[𝑡]

Figure 1.Typing rules for terms.𝑇if ≝ Π(ΠBoolSet)(ΠBool(Π(1 true)(Π(2 false)(3 2)))), or, informally, (𝑋 ∶ Bool → Set) →
(𝑧 ∶ Bool) → 𝑋 true → 𝑋 false → 𝑋 𝑧.

Σ; Γ ⊢ 𝑓 ∶ Π𝐴𝐵 eta-abs
Σ; Γ ⊢ 𝑓 ≡ 𝜆.𝑓 (+1) 0 ∶ Π𝐴𝐵

Σ; Γ ⊢ 𝑓 ∶ Σ𝐴𝐵 eta-paiRΣ; Γ ⊢ 𝑓 ≡ ⟨𝑓 .𝜋1, 𝑓  .𝜋2⟩ ∶ Σ𝐴𝐵
Σ; Γ ⊢ 𝛼  ⃗𝑒 ∶ 𝑇 𝛼 ≔ 𝑡 ∶ 𝐴 ∈ Σ Σ; Γ ⊢ (𝑡 @ ⃗𝑒) ∶ 𝑇

delta-metaΣ; Γ ⊢ 𝛼  ⃗𝑒 ≡ (𝑡 @ ⃗𝑒) ∶ 𝑇
Σ; Γ ⊢ if 𝐴 true 𝑢t 𝑢f  ⃗𝑒 ∶ 𝑇 Σ; Γ ⊢ (𝑢t @ ⃗𝑒) ∶ 𝑇

delta-if-tRueΣ; Γ ⊢ if 𝐴 true 𝑢t 𝑢f  ⃗𝑒 ≡ (𝑢t @ ⃗𝑒) ∶ 𝑇
Σ; Γ ⊢ if 𝐴 false 𝑢t 𝑢f  ⃗𝑒 ∶ 𝑇 Σ; Γ ⊢ (𝑢f @ ⃗𝑒) ∶ 𝑇

delta-if-falseΣ; Γ ⊢ if 𝐴 false 𝑢t 𝑢f  ⃗𝑒 ≡ (𝑢f @ ⃗𝑒) ∶ 𝑇
Σ; Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴 Σ; Γ ⊢ 𝐴 ≡ 𝐵 type conv-eqΣ; Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐵

Σ; Γ ⊢ 𝐴 ≡ 𝐵 ∶ Set type-eqΣ; Γ ⊢ 𝐴 ≡ 𝐵 type
ctx-empty-eqΣ ⊢ · ≡ · ctx

Σ ⊢ Γ1 ≡ Γ2 ctx
Σ; Γ1 ⊢ 𝐴1 ≡ 𝐴2 type ctx-vaR-eqΣ ⊢ Γ1, 𝐴1 ≡ Γ2, 𝐴2 ctx

Figure 2. Judgmental equality for terms, types and contexts

3.2 A Heterogeneous Notion of Equality
As explained in §2.4 we want to unify terms before their
types are known to be equal. Tomake sense of what it means
for two terms of potentially different types to be equal, we
introduce a notion of heterogeneous equality.

Definition 3.5 (Heterogeneous equality). If 𝑡 and 𝑢 are
terms such that Σ; Γ1 ⊢ 𝑡 ∶ 𝐴 and Σ; Γ2 ⊢ 𝑢 ∶ 𝐵,
and there exists a term 𝑣 such that Σ; Γ1 ⊢ 𝑡 ≡ 𝑣 ∶ 𝐴,
Σ; Γ2 ⊢ 𝑢 ≡ 𝑣 ∶ 𝐵 and fv(𝑣) ⊆ fv(𝑡) ∩ fv(𝑢) (the
latter called the interpolant property), then we say that 𝑡

and 𝑢 are heterogeneously equal with witness 𝑣, and write
Σ; Γ1‡Γ2 ⊢ 𝑡 ≅{𝑣}≅ 𝑢 ∶ 𝐴‡𝐵. We may also omit 𝑣 and
write Σ; Γ1‡Γ2 ⊢ 𝑡 ≅ 𝑢 ∶ 𝐴‡𝐵.

Remark 3.6. The heterogeneous equality is symmetric and
satisfies the following form of reflexivity: given Σ; Γ ⊢ 𝑡 ∶ 𝐴
we have Σ; Γ‡Γ ⊢ 𝑡 ≅{𝑡}≅ 𝑡 ∶ 𝐴‡𝐴.

Remark 3.7. If Σ; Γ1‡Γ2 ⊢ 𝑡 ≅{𝑣}≅ 𝑢 ∶ 𝐴‡𝐵, then by
Definition 3.5 and Statement 1, we have Σ; Γ1 ⊢ 𝑣 ∶ 𝐴 and
Σ; Γ2 ⊢ 𝑣 ∶ 𝐵. However, this does not mean that Σ ⊢ Γ1 ≡
Γ2 ctx, or Σ, Γ1 ⊢ 𝐴 ≡ 𝐵 type. For example (using variable

TyDe ’20, August 23, 2020, Virtual Event, USA Víctor López Juan and Nils Anders Danielsson

names for clarity), let Σ ≝ 𝔸 ∶ Set, 𝔹 ∶ Set, 𝐴 ≝ 𝔸 → 𝔸,
𝐵 ≝ 𝔹, Γ1 ≝ 𝑥 ∶ 𝐵, 𝑧 ∶ 𝐴 and Γ2 ≝ 𝑥 ∶ 𝐴, 𝑧 ∶ 𝐵. Then
we have Σ; Γ1‡Γ2 ⊢ ⟨𝑥, 𝜆𝑦.𝑧 𝑦⟩ ≅{⟨𝑥, 𝑧⟩}≅ ⟨𝜆𝑦.𝑥 𝑦, 𝑧⟩ ∶
(𝐵 × 𝐴)‡(𝐴 × 𝐵).

We use Definition 3.5 to formulate the soundness of the
rules given in the following section (Definition 3.14), and, in
particular, to describe the conditions under which metavari-
ables are instantiated (Rule Schema 11).

3.3 A Rule Schema Toolkit
Each step of our unification algorithm consists of the appli-
cation of a (rewrite) rule to a signature and/or one or more
constraints, producing a new signature and new constraints.

Definition 3.8 (Rule). A rule is a four-tuple of the form
Σ; ⃗𝒞 ⇝ Σ′; 𝒟⃗, where Σ and Σ′ are signatures, and ⃗𝒞 and
𝒟⃗ are lists of internal constraints. A rule schema is a family
of rules.

In this sectionwe list some of the rules that are used in the
algorithm (we do not have room to list all of them). These
rules are adaptations to our setting of rules that are used in
other developments.

Notation. Whenwriting down a list of constraints, wemay
use ∧ as a separator (instead of a comma), and □ to stand
for an empty such list.

Rule Schema 1 (Syntactic equality). Σ; Γ‡Γ′ ⊢ 𝑡 ≈ 𝑡 ∶
𝐴‡𝐴′ ⇝ Σ; □
Rule Schema 2 (λ-abstraction). Σ; Γ‡Γ′ ⊢ 𝜆.𝑡 ≈ 𝜆.𝑢 ∶
Π𝐴𝐵‡Π𝐴′𝐵′ ⇝ Σ; Γ‡Γ′, 𝐴‡𝐴′ ⊢ 𝑡 ≈ 𝑢 ∶ 𝐵‡𝐵′

Rule Schema 3 (Term conversion). Σ; Γ‡Γ′ ⊢ 𝑡 ≈ 𝑢 ∶
𝐴‡𝐴′ ⇝ Σ; Γ‡Γ′ ⊢ 𝑡′ ≈ 𝑢 ∶ 𝐴‡𝐴′ where Σ; Γ ⊢ 𝑡 ≡
𝑡′ ∶ 𝐴 and fv(𝑡) ⊇ fv(𝑡′)
Rule Schema 4 (Injectivity of Π). Σ; Γ‡Γ′ ⊢ Π𝐴𝐵 ≈
Π𝐴′𝐵′ ∶ Set‡Set ⇝ Σ; Γ‡Γ′ ⊢ 𝐴 ≈ 𝐴′ ∶ Set‡Set ∧
Γ‡Γ′, 𝐴‡𝐴′ ⊢ 𝐵 ≈ 𝐵′ ∶ Set‡Set
Rule Schema 5 (Injectivity of Σ). Analogous to Rule
Schema 4, replacing Π by Σ.

Rule Schema 6 (Constraint symmetry). Σ; Γ‡Γ′ ⊢ 𝑡 ≈ 𝑢 ∶
𝐴‡𝐴′ ⇝ Σ; Γ′‡Γ ⊢ 𝑢 ≈ 𝑡 ∶ 𝐴′‡𝐴
Rule Schema 7 (Type and context conversion). Σ; Γ‡Γ′ ⊢
𝑡 ≈ 𝑢 ∶ 𝐴‡𝐴′ ⇝ Σ; Γ0‡Γ′ ⊢ 𝑡 ≈ 𝑢 ∶ 𝐴0‡𝐴′ where
Σ ⊢ Γ, 𝐴 ≡ Γ0, 𝐴0 ctx

Rule Schema 8 (Pairs). Σ; Γ‡Γ′ ⊢ ⟨𝑡1, 𝑡2⟩ ≈ ⟨𝑢1, 𝑢2⟩ ∶
Σ𝐴𝐵‡Σ𝐴′𝐵′ ⇝ Σ; Γ‡Γ′ ⊢ 𝑡1 ≈ 𝑢1 ∶ 𝐴‡𝐴′ ∧ Γ ‡ Γ′ ⊢
𝑡2 ≈ 𝑢2 ∶ 𝐵[𝑡1]‡𝐵′[𝑢1]
Definition 3.9 (Strongly neutral term). A neutral term 𝑓
is strongly neutral if 𝑓 is of the form 𝑥  ⃗𝑒, 𝕒  ⃗𝑒, or if  ⃗𝑒, where
in the last case either the length of ⃗𝑒 is less than 2, or the
second element in ⃗𝑒 (the boolean) is a strongly neutral term.

Rule Schema 9 (Rigid-rigid unification). If ℎ  ⃗𝑒 and ℎ  ⃗⃗⃗ ⃗⃗ ⃗𝑒′ are
strongly neutral; | ⃗𝑒| = | ⃗⃗⃗ ⃗⃗ ⃗𝑒′| = 𝑛; 𝐽 ⊆ {1, …, 𝑛}; for each
𝑖 ∈ {1, …, 𝑛} − 𝐽 either 𝑒𝑖 = 𝑒′

𝑖 = .𝜋1 or 𝑒𝑖 = 𝑒′
𝑖 = .𝜋2;

and for each 𝑖 ∈ 𝐽 there exist 𝑡𝑖, 𝑢𝑖, 𝐵𝑖, 𝐶𝑖, 𝐵′
𝑖 , 𝐶′

𝑖 such that
𝑒𝑖 = 𝑡𝑖, 𝑒′

𝑖 = 𝑢𝑖, Σ; Γ ⊢ ℎ  ⃗𝑒1,…,𝑖−1 ∶ Π𝐵𝑖𝐶𝑖 and Σ; Γ′ ⊢
ℎ  ⃗⃗⃗ ⃗⃗ ⃗𝑒′1,…,𝑖−1 ∶ Π𝐵′

𝑖𝐶′
𝑖 , then Σ;Γ‡Γ′ ⊢ ℎ  ⃗𝑒 ≈ ℎ  ⃗⃗⃗ ⃗⃗ ⃗𝑒′ ∶ 𝑇 ‡𝑇 ′ ⇝

Σ; ⋀𝑖∈𝐽 Γ‡Γ′ ⊢ 𝑡𝑖 ≈ 𝑢𝑖 ∶ 𝐵𝑖‡𝐵′
𝑖

Some unification rules modify the signature by i) adding
new metavariable declarations, ii) instantiating existing
metavariables, iii) reordering signature entries or iv) replac-
ing terms with convertible terms. We call the result of these
operations a signature extension.

Definition 3.10 (Signature extension: Σ ⊑ Σ′). We say
that Σ′ extends Σ (written Σ′ ⊒ Σ or Σ ⊑ Σ′), iff Σ sig,
Σ′ sig and Σ ⊑′ Σ′, where ⊑′ is defined inductively:

(i) Σ1, Σ2 ⊑′ Σ1, 𝛼 ∶ 𝐴, Σ2
(ii) Σ1, 𝛼 ∶ 𝐴, Σ2 ⊑′ Σ1, 𝛼 ≔ 𝑡 ∶ 𝐴, Σ2
(iii) Σ1 ⊑′ Σ3  if  Σ1 ⊑ Σ2 and Σ2 ⊑ Σ3
(iv) Σ1, 𝕒 ∶ 𝐴, Σ2 ⊑′ Σ1, 𝕒 ∶ 𝐴′, Σ2  if  Σ1; · ⊢ 𝐴 ≡

𝐴′ type
(v) Σ1, 𝛼 ∶ 𝐴, Σ2 ⊑′ Σ1, 𝛼 ∶ 𝐴′, Σ2  if  Σ1; · ⊢ 𝐴 ≡

𝐴′ type
(vi) Σ1, 𝛼 ≔ 𝑡 ∶ 𝐴, Σ2 ⊑′ Σ1, 𝛼 ≔ 𝑡 ∶ 𝐴′, Σ2  if  Σ1; · ⊢

𝐴 ≡ 𝐴′ type
(vii) Σ1, 𝛼 ≔ 𝑡 ∶ 𝐴, Σ2 ⊑′ Σ1, 𝛼 ≔ 𝑡′ ∶ 𝐴, Σ2  if  Σ1; · ⊢

𝑡 ≡ 𝑡′ ∶ 𝐴
(viii) Σ ⊑′ Σ′  if  Σ′ is a (possibly trivial) reordering of Σ
Definition 3.10 is intended to justify Statement 3:

Statement 3 (Signature extension). If Σ ⊢ Γ ctx, Σ; Γ ⊢
𝐴 type, Σ; Γ ⊢ 𝑡 ∶ 𝐴, Σ; Γ ⊢ 𝐴 ≡ 𝐵 type or Σ; Γ ⊢ 𝑡 ≡ 𝑢 ∶
𝐴 and Σ′ ⊒ Σ, then Σ′ ⊢ Γ ctx, Σ′; Γ ⊢ 𝐴 type, Σ′; Γ ⊢ 𝑡 ∶
𝐴, Σ′; Γ ⊢ 𝐴 ≡ 𝐵 type or Σ′; Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴, respectively.

Reordering and normalizing signature entries is allowed:

Rule Schema 10 (Signature conversion). Σ; □ ⇝ Σ′; □
where Σ ⊑ Σ′ and Σ ⊒ Σ′

3.3.1 Metavariable Instantiation. Before instantiating
a metavariable we check that the types of the two sides are
compatible. However, we do not want to do this for irrel-
evant entries in the context. For this reason we generalize
the heterogeneous equality to contexts. (Gundry discusses
a similar idea [12, p. 69], but does not formalize it.)

Definition 3.11 (Heterogeneous context equality for sets of
variables). Given𝑋 ⊆ ℕ, let𝑋−1 ≝ {𝑥−1|𝑥 ∈ 𝑋, 𝑥 > 0}.
If the contexts Γ1 and Γ2 are well-formed with respect to
Σ, then the following rules define when they are hetero-
geneously equal with respect to the signature Σ and the
sets of variables 𝑋1 and 𝑋2, with Γ as witness (written
Σ ⊢ Γ1 ≅{Γ}≅𝑋1,𝑋2

Γ2).

Practical Dependent Type Checking using Twin Types TyDe ’20, August 23, 2020, Virtual Event, USA

Σ sig emptyΣ ⊢ · ≅{ · }≅∅,∅ ·

0 ∉ 𝑋1 ∪ 𝑋2 Σ ⊢ Γ1 ≅{Γ}≅𝑋1−1,𝑋2−1 Γ2
unusedΣ ⊢ Γ1, 𝐴1 ≅{Γ, Set}≅𝑋1,𝑋2

Γ2, 𝐴2

0 ∈ 𝑋2 − 𝑋1
Σ ⊢ Γ1 ≅{Γ}≅𝑋1−1,(𝑋2−1)∪fv(𝐴2) Γ2

used-RΣ ⊢ Γ1, 𝐴1 ≅{Γ, 𝐴2}≅𝑋1,𝑋2
Γ2, 𝐴2

0 ∈ 𝑋1 − 𝑋2
Σ ⊢ Γ1 ≅{Γ}≅(𝑋1−1)∪fv(𝐴1),𝑋2−1 Γ2

used-lΣ ⊢ Γ1, 𝐴1 ≅{Γ, 𝐴1}≅𝑋1,𝑋2
Γ2, 𝐴2

0 ∈ 𝑋1 ∩ 𝑋2
Σ; Γ1‡Γ2 ⊢ 𝐴1 ≅{𝐴}≅ 𝐴2 ∶ Set‡Set

Σ ⊢ Γ1 ≅{Γ}≅(𝑋1−1)∪fv(𝐴1),(𝑋2−1)∪fv(𝐴2) Γ2
usedΣ ⊢ Γ1, 𝐴1 ≅{Γ, 𝐴}≅𝑋1,𝑋2

Γ2, 𝐴2

Here are more statements about the theory, and a lemma:

Statement 4 (Type of unused variables). If Σ; Γ ⊢ 𝐵 type
and Σ; Γ, 𝐴, Δ ⊢ 𝑡 ∶ 𝑇 with 0 ∉ fv(Δ ⊢ 𝑡 ∶ 𝑇), then
Σ; Γ, 𝐵, Δ ⊢ 𝑡 ∶ 𝑇 . This property generalizes to other judg-
ments.

Statement 5 (Context conversion). If Σ; Γ ⊢ 𝐵 type and
Σ; Γ, 𝐴, Δ ⊢ 𝑡 ∶ 𝑇 with Σ; Γ ⊢ 𝐴 ≡ 𝐵 type, then
Σ; Γ, 𝐵, Δ ⊢ 𝑡 ∶ 𝑇 . This property generalizes to other judg-
ments.

Lemma 3.12 (Typing in heterogeneously equal contexts).
Let 𝑡 and 𝑢 be terms such that Σ; Γ1 ⊢ 𝑡 ∶ 𝐵1, Σ; Γ2 ⊢ 𝑢 ∶ 𝐵2,
with |Γ1| = |Γ2|.

Assume that we have (i) Σ; Γ1‡Γ2 ⊢ 𝐵1 ≡{𝐵}≡ 𝐵2 ∶
Set‡Set and (ii) Σ ⊢ Γ1 ≡{Γ}≡fv(𝑡)∪fv(𝐵1),fv(𝑢)∪fv(𝐵2) Γ2.

Then Σ; Γ ⊢ 𝑡 ∶ 𝐵 and Σ; Γ ⊢ 𝑢 ∶ 𝐵.

Proof sketch. By induction on the derivation of (ii), using
Statements 4 and 5 and the interpolant property from Defi-
nition 3.5. (See the first author’s licentiate thesis [18] for a
detailed proof.) □

Notation. We use “𝜆𝑛.” to denote 𝑛 copies of the binder
“𝜆.”, and “ ⃗𝑥𝑛” to denote a vector of 𝑛 (not necessarily dis-
tinct) variables.

Rule Schema 11 (Metavariable instantiation).
Σ; Γ1‡Γ2 ⊢ 𝛼  ⃗𝑥𝑛 ≈ 𝑡 ∶ 𝐵1‡𝐵2 ⇝ Σ′;□ where
Σ = Σ1, 𝛼 ∶ 𝐴, Σ2, with consts(𝑡) ⊆ decls(Σ1),
Σ′ = Σ1, 𝛼 ≔ 𝜆𝑛.(𝑡[⃗𝑥𝑛 ↦ 𝑛 − 1, …, 0]) ∶ 𝐴, Σ2,

⃗𝑥𝑛 is a list of 𝑛 distinct variables, fv(𝑡) ⊆ ⃗𝑥𝑛,
Σ ⊢ Γ1 ≅{Γ}≅{𝑥1,…,𝑥𝑛}∪fv(𝐵1),fv(𝑡)∪fv(𝐵2) Γ2 and
Σ; Γ1‡Γ2 ⊢ 𝐵1 ≅{𝐵}≅ 𝐵2 ∶ Set‡Set

3.3.2 Other Rules. The following rule, which is based on
Abel and Pientka’s rule “Eliminating projections” [5], can
be used to deal with metavariable arguments such as 𝑥 .𝜋1.
(The rule is presented using named variables rather than de
Bruijn indices in order to make it easier to read.)

Rule Schema 12 (Context variable currying).
Σ; Γ1‡Γ2, 𝑥 ∶ Σ𝑥1 ∶ 𝑈1.𝑉1‡Σ𝑥1 ∶ 𝑈2.𝑉2, Δ1‡Δ2 ⊢ 𝑡1 ≈
𝑡2 ∶ 𝐴1‡𝐴2 ⇝ Σ; Γ1‡Γ2, 𝑥1 ∶ 𝑈1‡𝑈2, 𝑥2 ∶ 𝑉1‡𝑉2, Δ′

1‡Δ′
2

⊢ 𝑡′
1 ≈ 𝑡′

2 ∶ 𝐴′
1‡𝐴′

2
where Δ′

1 = Δ1[⟨𝑥1, 𝑥2⟩/𝑥], 𝑡′
1 = 𝑡1[⟨𝑥1, 𝑥2⟩/𝑥], 𝐴′

1 =
𝐴1[⟨𝑥1, 𝑥2⟩/𝑥], Δ′

2 = Δ2[⟨𝑥1, 𝑥2⟩/𝑥], 𝑡′
2 = 𝑡2[⟨𝑥1, 𝑥2⟩/𝑥],

𝐴′
2 = 𝐴2[⟨𝑥1, 𝑥2⟩/𝑥]
Other rules proposed by Abel and Pientka [5] and Gundry

and McBride [13, 12] can be used to remove (“kill”) elimina-
tors from a metavariable-headed neutral term. This might
make it possible to make progress on some constraints.
These rules are called pruning [5, 12], same metavari-
able unification [5]/solving flex-flex equations by intersec-
tion [12], and flattening of Σ-types [5]/metavariable simpli-
fication [12]. We also use rules of this kind in the implemen-
tation.

3.4 A Correctness Property
In this section we state correctness properties for rule
schemas, and for the overall unification algorithm. We also
sketch proofs of the soundness of some of the rule schemas.

Definition 3.13 (Constraint satisfaction). Given an inter-
nal problem Σ; ⃗𝒞 we say that Σ satisfies ⃗𝒞 (written Σ ∣≈ ⃗𝒞)
if, for each constraint 𝒞 = Γ‡Γ′ ⊢ 𝑡 ≅? 𝑢 ∶ 𝐴‡𝐴′ ∈ ⃗𝒞, we
have Σ; Γ‡Γ′ ⊢ 𝑡 ≅ 𝑢 ∶ 𝐴‡𝐴′.

Definition 3.14 (Soundness of a rule schema). A rule
schema is sound if, for each rule Σ; ⃗𝒞 ⇝ Σ′;𝒟⃗ in the
schema such that Σ; ⃗𝒞 is a well-formed internal problem, we
have that (i) Σ ⊑ Σ′ (in particular, Σ′ sig), (ii) Σ′;𝒟⃗ is a
well-formed internal problem, and (iii) for every Σ″ with
Σ″ ⊒ Σ′, if Σ″ ∣≈ 𝒟⃗ then Σ″ ∣≈ ⃗𝒞.
One of the aims of the definition of heterogeneous equal-

ity (Definition 3.5) is to make Rule Schema 1 sound.

Lemma 3.15. Rule Schema 1 is sound.

Proof. By the premises of Definition 3.14, Σ; ⃗𝒞 is a well-
formed internal problem. By Definition 2.3, Σ sig, Σ; Γ ⊢
𝑡 ∶ 𝐴 and Σ; Γ′ ⊢ 𝑡 ∶ 𝐴′.

(i) By Definition 3.10, Σ ⊑ Σ.
(ii) We have Σ sig, and the problem Σ; □ has no con-

straints, so by Definition 2.3 the problem is well-
formed.

(iii) Assume Σ″ ⊒ Σ. By Statement 3 we have Σ″; Γ ⊢ 𝑡 ∶
𝐴 and Σ″; Γ′ ⊢ 𝑡 ≡ 𝑡 ∶ 𝐴′. By reflexivity of equality
(see Definition 3.4) Σ″; Γ ⊢ 𝑡 ≡ 𝑡 ∶ 𝐴 and Σ″; Γ′ ⊢

TyDe ’20, August 23, 2020, Virtual Event, USA Víctor López Juan and Nils Anders Danielsson

𝑡 ≡ 𝑡 ∶ 𝐴′. By Definition 3.5 we get that Σ″; Γ‡Γ′ ⊢
𝑡 ≅{𝑡}≅ 𝑡 ∶ 𝐴‡𝐴′ (because fv(𝑡) ⊆ fv(𝑡) ∩ fv(𝑡)). By
Definition 3.13 we can conclude that Σ″ ∣≈ 𝒞. □

Statement 6 (λ inversion). If Σ; Γ ⊢ 𝜆.𝑡 ∶ Π𝐴𝐵, then
Σ; Γ, 𝐴 ⊢ 𝑡 ∶ 𝐵.

Lemma 3.16. Rule Schema 2 is sound.
Proof sketch.

1. By the assumption that Σ; ⃗𝒞 is well-formed we have
Σ sig, and thus (by Definition 3.10) Σ ⊑ Σ.

2. By the same assumption Σ; Γ ⊢ 𝜆.𝑡 ∶ Π𝐴𝐵 and
Σ; Γ′ ⊢ 𝜆.𝑢 ∶ Π𝐴′𝐵′, which by Statement 6 gives
Σ; Γ, 𝐴 ⊢ 𝑡 ∶ 𝐵 and Σ; Γ′, 𝐴′ ⊢ 𝑢 ∶ 𝐵′. Because
Σ sig we get that Σ;𝒟⃗ is well-formed.

3. If Σ″; Γ‡Γ′, 𝐴‡𝐴′ ⊢ 𝑡 ≅{𝑣}≅ 𝑢 ∶ 𝐵‡𝐵′ then
Σ″; Γ‡Γ′ ⊢ 𝜆.𝑡 ≅{𝜆.𝑣}≅ 𝜆.𝑢 ∶ Π𝐴𝐵‡Π𝐴′𝐵′ (use
the abs rule twice). □

In §2.3 a metavariable is instantiated to a term of a mis-
matched type. The constraints placed on the metavariable
instantiation rule are intended to preclude this.

Statement 7 (Signature strengthening). If consts(Γ) ∪
consts(𝑡) ∪ consts(𝐴) ⊆ decls(Σ1), and Σ; Γ ⊢ 𝑡 ∶ 𝐴
with Σ = Σ1, Σ2 for some Σ2, then Σ1; Γ ⊢ 𝑡 ∶ 𝐴. This prop-
erty generalizes to other judgments.

Statement 8 (No extraneous constants). For any Σ, Γ and
𝐴, if Σ; Γ ⊢ 𝐴 type, then consts(Γ) ∪ consts(𝐴) ⊆
decls(Σ). This generalizes to other judgments; in particular,
if Σ1, 𝛼 ∶ 𝐴, Σ2 sig then consts(𝐴) ⊆ decls(Σ1).
Statement 9 (Typing of abstractions). If 𝛼 ∶ 𝐴 ∈ Σ, Σ; Γ ⊢
𝛼  ⃗𝑥𝑛 ∶ 𝐵, where all the variables in the vector ⃗𝑥𝑛 are distinct,
Σ; Γ ⊢ 𝑡 ∶ 𝐵, and fv(𝑡) ⊆ { ⃗𝑥𝑛}, then Σ; · ⊢ 𝜆𝑛.(𝑡[⃗𝑥𝑛 ↦
𝑛 − 1, …, 0]) ∶ 𝐴 and 𝜆𝑛.(𝑡[⃗𝑥𝑛 ↦ 𝑛 − 1, …, 0]) @ ⃗𝑥𝑛 = 𝑡.
Statement 10 (Replacement of neutrals). If Σ; Γ ⊢ ℎ ⇒ 𝐴,
Σ; Γ ⊢ 𝑡 ∶ 𝐴 and Σ; Γ ⊢ ℎ  ⃗𝑒 ∶ 𝑇 , then Σ; Γ ⊢ 𝑡 @ ⃗𝑒 ∶ 𝑇 .

Statement 11 (Context weakening). If Σ; · ⊢ 𝑡 ∶ 𝐴 and
Σ ⊢ Γ ctx, then Σ; Γ ⊢ 𝑡 ∶ 𝐴.

Lemma 3.17. Rule Schema 11 is sound.
Proof sketch.

(i) Because the original problem is well-formed we have
Σ sig, Σ; Γ1 ⊢ 𝛼  ⃗𝑥 ∶ 𝐵1 and Σ; Γ2 ⊢ 𝑡 ∶ 𝐵2. The
rule preconditions and Lemma 3.12 imply that Σ; Γ ⊢
𝛼  ⃗𝑥 ∶ 𝐵 and Σ; Γ ⊢ 𝑡 ∶ 𝐵. Let 𝑡′ = 𝑡[⃗𝑥 ↦ 𝑛 − 1, …, 0].
By Statement 9 we have Σ; · ⊢ 𝜆𝑛.𝑡′ ∶ 𝐴. By State-
ment 8 consts(𝐴) ⊆ decls(Σ1). Statement 7 implies
that Σ1; · ⊢ 𝜆𝑛.𝑡′ ∶ 𝐴, so Σ′ sig. By Definition 3.10
we get that Σ ⊑ Σ′.

(ii) Because Σ′ sig, Σ′; □ is a well-formed problem.
(iii) Assume Σ″ ⊒ Σ′.

By Statement 9 we get that Σ; · ⊢ 𝜆𝑛.𝑡′ ∶ 𝐴 (as men-
tioned above) and 𝜆𝑛.𝑡′ @ ⃗𝑥 = 𝑡. By Statement 1

Σ′ ⊢ Γ1 ctx. By Statement 11 and Statement 3 we
have Σ′; Γ1 ⊢ 𝜆𝑛.𝑡′ ∶ 𝐴. By rule meta2 Σ′; Γ1 ⊢ 𝛼 ⇒
𝐴. By Statement 3 and Statement 10 Σ′; Γ1 ⊢ 𝑡 ∶ 𝐵1.
Thus, by rule delta-meta and Statement 3, Σ′; Γ1 ⊢
𝛼  ⃗𝑥 ≡ 𝑡 ∶ 𝐵1. By Statement 3 Σ″; Γ1 ⊢ 𝛼  ⃗𝑥 ≡ 𝑡 ∶ 𝐵1.
By reflexivity and Statement 3 we get that Σ″; Γ2 ⊢
𝑡 ≡ 𝑡 ∶ 𝐵2. Because fv(𝑡) ⊆ ⃗𝑥 we have fv(𝑡) ⊆
fv(𝛼  ⃗𝑥) ∩ fv(𝑡). By Definition 3.13 we can conclude
that Σ″ ∣≈ ⃗𝒞. □

A solution to an internal unification problem may be pro-
duced by chaining sound unification rules together.

Definition 3.18 (Problem reduction). We say that the prob-
lem Σ; ⃗⃗⃗ ⃗ℰ reduces to Σ′; ⃗⃗⃗ ⃗⃗ ⃗⃗ℰ′ in one step (written Σ; ⃗⃗⃗ ⃗ℰ ⇝⇝⇝
Σ′; ⃗⃗⃗ ⃗⃗ ⃗⃗ℰ′), if ⃗⃗⃗ ⃗ℰ = ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗ℰ1 ∧ ⃗⃗⃗⃗⃗𝒞 ∧ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗ℰ2, ⃗⃗⃗ ⃗⃗ ⃗⃗ℰ′ = ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗ℰ1 ∧ ⃗⃗⃗⃗⃗ ⃗⃗𝒟 ∧ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗ℰ2, and
Σ; ⃗⃗⃗⃗⃗𝒞 ⇝ Σ′; ⃗⃗⃗ ⃗⃗ ⃗⃗𝒟 is a unification rule. We say that the prob-
lem Σ; ⃗⃗⃗ ⃗ℰ reduces to Σ′; ⃗⃗⃗ ⃗⃗ ⃗⃗ℰ′ if Σ; ⃗⃗⃗ ⃗ℰ⇝⇝⇝⋆ Σ′; ⃗⃗⃗ ⃗⃗ ⃗⃗ℰ′, where _⇝⇝⇝⋆ _ is
the reflexive, transitive closure of _ ⇝⇝⇝ _.

The issue described in §2.3 can be avoided by using sound
rules.

Lemma 3.19 (Soundness of unification). If Σ; ⃗𝒞⇝⇝⇝⋆ Σ′; □,
where Σ; ⃗𝒞 is well-formed and each step in the sequence is
a sound rule, then Σ′ sig, Σ ⊑ Σ′ and Σ′ ∣≈ ⃗𝒞. If ⃗𝒞 is
elaborated from well-formed constraints (as in §2.5), then Σ′

is a well-typed solution to the original problem as defined in
§2.2.

Proof. By induction on the length of the sequence, using the
soundness of each rule. The second statement follows by
Definition 3.5, Statement 2 and the typing rules. □

We want our rules not only to produce well-typed so-
lutions, but also to preserve all the possible solutions of
the problem to which they are applied. We call this prop-
erty completeness. This property implies that if the result-
ing problem has a unique solution, or no solution, then the
same holds for the original problem.
With the aim of making the statement of what it means

for a rule schema to be complete easier to understand, we de-
fine a notion of signature called metasubstitution in which
all metavariables are instantiated.

Definition 3.20 (Metasubstitution). A metasubstitution Θ
is a signature of the form Θ ∶∶= · | Θ, 𝕒 ∶ 𝐴 | 𝛼 ≔ 𝑡 ∶ 𝐴,
where the types and terms in Θ are all metavariable-free.

We say that Θ is a well-formed metasubstitution (Θwf)
iff Θ is a metasubstitution and Θ sig.

Equality of metasubstitutions is defined analogously to
signature extension:

Definition 3.21 (Equality of metasubstitutions). We say
that the metasubstitutions Θ and Θ′ are equal (written Θ ≡
Θ′) if Θ1 wf, Θ2 wf and Θ1 ≡′ Θ2, where:

Practical Dependent Type Checking using Twin Types TyDe ’20, August 23, 2020, Virtual Event, USA

(i) Θ1, 𝕒 ∶ 𝐴, Θ2 ≡′ Θ1, 𝕒 ∶ 𝐴′, Θ2  if  
Θ1; · ⊢ 𝐴 ≡ 𝐴′ type

(ii) Θ1, 𝛼 ≔ 𝑡 ∶ 𝐴, Θ2 ≡′ Θ1, 𝛼 ≔ 𝑡 ∶ 𝐴′, Θ2  if  
Θ1; · ⊢ 𝐴 ≡ 𝐴′ type

(iii) Θ1, 𝛼 ≔ 𝑡 ∶ 𝐴, Θ2 ≡′ Θ1, 𝛼 ≔ 𝑡′ ∶ 𝐴, Θ2  if  
Θ1; · ⊢ 𝑡 ≡ 𝑡′ ∶ 𝐴

(iv) Θ ≡′ Θ′  if  Θ′ is a reordering of Θ
(v) Θ1 ≡′ Θ3  if  Θ1 ≡ Θ2 and Θ2 ≡ Θ3

Definition 3.22 (Metasubstitution compatibility). A meta-
substitution Θ is compatible with an internal problem Σ; ⃗𝒞
(Θ ⊨ Σ; ⃗𝒞) if Θ and Σ; ⃗𝒞 are well-formed and:

(i) Θ ⊨ Σ, that is, decls(Θ) = decls(Σ) and for each
declaration 𝐷 ∈ Σ, either (i) 𝐷 = 𝕒 ∶ 𝐴 and Θ; · ⊢
𝕒 ∶ 𝐴, (ii) 𝐷 = 𝛼 ∶ 𝐴 and Θ; · ⊢ 𝛼 ∶ 𝐴, or (iii)
𝐷 = 𝛼 ≔ 𝑢 ∶ 𝐴 and Θ; · ⊢ 𝛼 ≡ 𝑢 ∶ 𝐴.

(ii) For each constraint 𝒞 = Γ‡Γ′ ⊢ 𝑡 ≅? 𝑢 ∶ 𝐴‡𝐴′ ∈ ⃗𝒞,
Θ ⊨ 𝒞, that is, we have Θ ⊢ Γ ≡ Γ′ ctx, Θ; Γ ⊢ 𝐴 ≡
𝐴′ type, and Θ; Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴.

We say that a rule schema is complete if it preserves com-
patible metasubstitutions in the following way:
Definition 3.23 (Completeness of a rule schema). A rule
schema is complete if, for each rule Σ; ⃗𝒞 ⇝ Σ′;𝒟⃗ in the
schema and each metasubstitution Θ such that Θ ⊨ Σ; ⃗𝒞,
there is a metasubstitution Θ′ such that Θ′ ⊨ Σ′;𝒟⃗ and
Θ = Θ′

Σ (note the use of = rather than ≡). Here ΘΣ (“Θ
restricted toΣ”) is ametasubstitution that contains the same
declarations asΘ, in the same order, except that declarations
of metavariables that are not declared in Σ are omitted.

We have sketched the soundness of some of the rules from
§3.3 (see Lemmas 3.15, 3.16 and 3.17). We state that all of
these rules are correct:
Statement 12 (Correctness of rules). The rules described in
§3.3 are sound and complete.

We now state the main correctness property:
Statement 13 (Correctness of unification). Let Σ; ⃗𝒞 be an
internal problem derived from well-formed constraints of the
form Σ; Γ ⊢ 𝑡 ∶ 𝐴 ≡? 𝑢 ∶ 𝐵 as per §2.5. Assume that
Σ; ⃗𝒞⇝⇝⇝⋆ Σ′; □, where each step in the sequence is a sound
and complete rule and Σ′ has no uninstantiated metavariable
declarations. Then Σ′ sig, Σ′ ∣≈ ⃗𝒞, and there exists a unique
closed solution toΣ; ⃗𝒞 in the sense that there is (i) ametasubsti-
tution Θ such that Θ ⊨ Σ; ⃗𝒞, and (ii) for every Θ̃, if Θ̃ ⊨ Σ; ⃗𝒞
then Θ ≡ Θ̃.

For a proof of Statements 12 and 13 under certain assump-
tions about the type theory, see the first author’s licentiate
thesis [18].

3.5 Unification Example
Here we show how an algorithm may apply the rules from
§3.3 in order to solve the unification problem described in

§2.5 (ignoring the fact that some features used to state the
problem are not part of the theory described above). All in-
termediate signatures and constraints are well-formed.

Example 3.24. As in §2.5, define a problem Σ; 𝒞1, 𝒞2:
Σ ≝ 𝔽 ∶ Bool → Set, 𝛼 ∶ Bool → BoolOp
𝒞1 ≝ 𝑥 ∶ Bool‡Bool ⊢ 𝔽 (get (𝛼 𝑥)) → BoolOp ≅?

𝔽 true → BoolOp ∶ Set‡Set
𝒞2 ≝ 𝑥 ∶ Bool‡Bool ⊢ 𝜆𝑦.None ≅? 𝜆𝑦.(𝛼 𝑥) ∶

(𝔽 (get (𝛼 𝑥)) → BoolOp)‡(𝔽 true → BoolOp)
Step 1. By applying Rule Schema 2 to 𝒞2 we get

Σ; 𝒞1, 𝒞2 ⇝⇝⇝ Σ; 𝒞1, 𝒞′
2, where 𝒞′

2 ≝ 𝑥 ∶ Bool‡Bool,
𝑦 ∶ 𝔽 (get (𝛼 𝑥)) ‡ 𝔽 true ⊢ None ≅? 𝛼 𝑥 ∶
BoolOp‡BoolOp.

Step 2. By applying a symmetric variant of Rule Schema 11
to 𝒞′

2 we get Σ; 𝒞1, 𝒞′
2 ⇝⇝⇝ Σ′; 𝒞1, where Σ′ ≝ 𝔽 ∶

Bool → Set, 𝛼 ≔ 𝜆𝑦.None ∶ Bool → BoolOp.
Step 3. By applying Rule Schema 3 to 𝒞1 we get Σ′; 𝒞1 ⇝⇝⇝

Σ′; 𝒞′
1, where 𝒞′

1 ≝ 𝑥 ∶ Bool‡Bool ⊢ 𝔽 true →
BoolOp ≅? 𝔽 true → BoolOp ∶ Set‡Set.

Step 4. By Rule Schema 1 Σ′; 𝒞′
1 ⇝⇝⇝ Σ′; □.

Thus we have Σ; 𝒞1, 𝒞2 ⇝⇝⇝⋆ Σ′; □. Note that Σ′ is a meta-
substitution satisfying Σ′ ⊨ Σ; 𝒞1, 𝒞2. By Statement 13 this
solution is unique (up to ≡). □

4 Evaluation
To assess the practicality of the unification rules in §3 we
have implemented them in a type checker. (No guarantees
are made that the implementation is free of bugs.) The type
checker’s performance has been investigated for a small
number of examples. Note that the type checker’s imple-
mentation was tuned based on these examples: we make no
guarantees that it performs well in other cases.

4.1 Implementation
The type checker Tog [24] was used as a starting point. Tog
implements an Agda-like language with Π-types, records
with η-equality (also for the unit type), inductive-recursive
data types and an identity type.

Tog unifies types before terms, which prevents it from
handling Example 2.2 successfully. We have changed Tog’s
constraint solver so that it uses twin types and rules based
on those discussed in §3.3. We call the resulting implemen-
tation Tog+. We do not have room to describe exactly how
the constraint solver makes use of the rules, but the source
code of Tog+ is available to download [19].
Tog+ differs from the framework described in §3 in some

significant ways:
Singleton Types With η-Equality Unit types with η-

equality are tricky to implement correctly. Failure to
take the effects of the η rule into account may result
in lack of completeness [3]. In an attempt to address

TyDe ’20, August 23, 2020, Virtual Event, USA Víctor López Juan and Nils Anders Danielsson

this we (i) restrict pruning so that it is not applied to
terms of potentially singleton type and (ii) avoid us-
age of Rule Schema 9 until it is known that the types
of both sides are not singletons.

Recursive Definitions Tog and Tog+ admit general recur-
sion and negative data types. We ignore issues related
to this.

Unordered Signatures Signatures are ordered (Defini-
tion 3.1). Agda, Tog and Tog+ use unordered signa-
tures.This introduces a possibility of cyclic dependen-
cies between declarations. We use an occurs check to
ensure that a metavariable is not used, directly or in-
directly, in its own body. However, we do not check
that a metavariable is not used in its own type. Nei-
ther does Agda [1], although such a check could be
implemented.

Tog+ also implements a number of optimizations beyond
the ones already in Tog, including the following ones:

(i) We keep track of constraints which it is sufficient to
satisfy for both sides of a twin type to become equal,
and use this information, for instance, when check-
ing the heterogeneous context equality precondition
of Rule Schema 11 (metavariable instantiation).

(ii) We use an “unblocker” mechanism, extending the one
implemented in Tog [24].This mechanism keeps track
of which metavariables and constraints are prevent-
ing a constraint from being reduced, and postpones
work on the constraint until the blocking metavari-
ables have been instantiated and the blocking con-
straints have been solved.

(iii) We use hash-consing and memoization to (at least in
some cases) speed up common operations on terms
and reduce memory usage. In particular this enables
us to implement Rule Schema 1 efficiently.

4.2 Benchmarks
We have benchmarked the implementation using an ex-
ample based on McBride’s method for representing de-
pendently typed languages inside dependently typed lan-
guages [25]. We defined a small type theory inside Tog+

(and Agda) using this technique, and then we defined sev-
eral types inside this type theory: partial definitions of “se-
toid” and “precategory”, and full definitions of other math-
ematical structures. Our code makes use of implicit argu-
ments, and some of the constraints produced by Tog+ are
similar to, or more complicated than, those in Example 2.2.

The left column of Figure 3 shows the time required to
type check the examples in each of the tested implementa-
tions (real execution time). We first observe that, if we com-
pare Tog+ with andwithout the syntactic equality rule (Rule
Schema 1), we observe an increase of execution time across
all examples. (When the syntactic equality rule is disabled
Tog+ instead uses specific cases such as Σ; Γ ⊢ Set ≈ Set ∶

Set‡Set, Σ; Γ ⊢ Bool ≈ Bool ∶ Set‡Set, Σ; Γ ⊢ true ≈ true ∶
Bool‡Bool and Σ; Γ ⊢ false ≈ false ∶ Bool‡Bool.)

Tog+ uses less time than Agda for most of the examples.
However, we are cautious about claiming a performance im-
provement with respect to Agda, because Agda does certain
things that our prototype does not (even though we did turn
off Agda’s termination and positivity checkers). Note also
that the examples were chosen because they were challeng-
ing for a previous version of Agda. Our takeaway is that, for
these examples, the execution times are comparable.

The right column of Figure 3 shows the peak amount of
memory used for each implementation. Tog+ usesmuch less
memory than Agda, perhaps due to the use of hash-consing.
Data and R code used for the figures is available [17].

5 Related Work
We review the history of higher-order unification in the con-
text of dependent types, and then discuss the approaches
taken by some popular implementations.

Higher-Order Unification. The problem of higher-
order unification is in general undecidable [14]. An al-
gorithm for higher-order unification was proposed by
Huet [15]: the algorithm enumerates all possible unifiers
but, due to the undecidability of the problem, the algorithm
might not terminate. Miller [26] discovered that, when the
constraints are of a specific form (the pattern fragment), the
problem becomes decidable. Reed [30] presented a termi-
nating algorithm for dynamic pattern unification. Abel and
Pientka [5] extended dynamic pattern unification to handle
Σ-types with η-equality.
Dependent type checking with metavariables using

higher-order unification was implemented in ALF [22, 21].
In ALF intermediate terms are well-typed only modulo a set
of constraints. Muñoz [27] shows how to perform unifica-
tion in dependent type theories such as the Calculus of Con-
structions [9] in a way that is well-typed at every step. As
Norell and Coquand [29, 28] point out, ill-typed terms may
cause the type checker to loop. Their solution is to replace
possibly ill-typed subterms by guarded constants, terms that
do not normalize until a given constraint is satisfied.

Uniqueness and the Open-World Assumption. Imple-
mentations of algorithms performing logical reasoning may
or may not conform to the open-world assumption (OWA),
which is “the assumption that what is not known to be true
or false might be true” [16].
Under the OWA, given the signature Σ = 𝔸 ∶ Set, 𝕒 ∶ 𝔸,

whether “𝑡 = 𝕒 is the unique term such that Σ; · ⊢ 𝑡 ∶ 𝔸”
is unknown, as this will not hold if Σ is extended with, for
example, the declaration 𝕓 ∶ 𝔸. Whether a rule respects the
OWA is defined as follows:

Definition 5.1. A rule schema respects the open-world as-
sumption if, for each ruleΣ; ⃗𝒞 ⇝ Σ′;𝒟⃗, and any declaration

Practical Dependent Type Checking using Twin Types TyDe ’20, August 23, 2020, Virtual Event, USA

Precat.

Setoid

0 5000 10000 15000 20000

CPU (ms)

S
tr

u
ct

u
re

Precat.

Setoid

0 300 600 900

Memory (MB)

Type

Pointed

Subset

Multigraph

Refl. graph

0 200 400 600

CPU (ms)

S
tr

u
ct

u
re

Type

Pointed

Subset

Multigraph

Refl. graph

0 10 20 30

Memory (MB)

Implementation Tog⁺ without the syntactic equality rule Tog⁺ Agda

Figure 3.Median resource usage for the examples. The top row shows the resource usage for the two largest examples, while
the bottom row shows corresponding information for the rest, using different scales. Each example is benchmarked 40 times.
We plot the median value and error bars spanning 95% confidence intervals (bootstrapped, 1000 samples).

𝐷 = 𝕒 ∶ 𝐴, 𝐷 = 𝛼 ∶ 𝐴, or 𝐷 = 𝛼 ∶ 𝐴 with Σ, 𝐷 sig and
Σ′, 𝐷 sig, it contains the rule Σ, 𝐷; ⃗𝒞 ⇝ Σ′, 𝐷;𝒟⃗.

The metasubstitutions we define (Definition 3.20) contain
no uninstantiated metavariables, similarly to the grounding
metasubstitutions defined by Abel and Pientka [5]. We do
not believe that the resulting notion of completeness (Defi-
nition 3.23) necessarily entails the open-world assumption.
However, it holds for the rules defined in §3.3.

Lemma 5.2. The rule schemas defined in §3.3 respect the
open-world assumption.

Proof sketch. Let Σ; ⃗𝒞 ⇝ Σ′;𝒟⃗ belong to one of the rule
schemas in §3.3, and let 𝐷 be such that Σ, 𝐷 sig and
Σ′, 𝐷 sig. By definition of the rule schema (and, for Rule
Schemas 3, 7, 9, 10 and 11, by Statement 3) we have that
Σ, 𝐷; ⃗𝒞 ⇝ Σ′, 𝐷;𝒟⃗ belongs to the same rule schema. (For
Rule Schema 10 one can show by induction on the deriva-
tion, using Statement 3, that for any Σ, Σ′ and 𝐷, if Σ ⊑ Σ′,
Σ, 𝐷 sig and Σ′, 𝐷 sig, then Σ, 𝐷 ⊑ Σ′, 𝐷.) □

An alternative approach, taken by Gundry [12], is to al-
low solutions to contain uninstantiated metavariables, and
to discuss most general solutions instead of uniqueness.

Agda. Agda uses dynamic pattern unification with post-
ponement [28]: constraints are solved immediately if they

are in the pattern fragment, and are otherwise postponed
until instantiations of metavariables allow these postponed
constraints to be simplified. Metavariables are only instanti-
ated when the solution is unique (ignoring bugs). Our proto-
type uses the same technique. However, in Agda constraints
have a single context and a single type. Agda instead uses
guarded constants.
When subjected to the constraints in Example 2.1 Agda

replaces the type of 𝑥 with a guarded constant 𝑝 of type Set,
yielding the constraint 𝑥 ∶ 𝑝 ⊢ 𝛼 𝑥 ≡? 𝔻 (𝑓 (𝛽 0) 𝑥) ∶ Set.
The constant 𝑝 is convertible to ℕ if the constraint · ⊢ ℕ ≡
𝐹  (𝛽 0) ∶ Set is solved. Despite guarding the type of 𝑥, the
type checker still performs the ill-typed instantiation that
we discuss in §2.3.

In the course of this work the first author discovered that
this issue [20] can be solved using further application of the
technique of guarded constants, and proposed a fix to the
Agda developers. However, this fix was reverted after the
second author found that it caused a regression [2]. For an-
other open issue [10] we are unaware of any fix not involv-
ing a heterogeneous approach to unification such as the one
discussed in this paper.
Finally it is not clear how to handle the unit type with η-

equality while preserving completeness. Agda is not always
complete [3], while we have opted to implement a weaker

TyDe ’20, August 23, 2020, Virtual Event, USA Víctor López Juan and Nils Anders Danielsson

notion of pruning and of Rule Schema 9 with the aim of
avoiding the issue.

Other Proof Assistants. Other languages/proof assis-
tants based on intensional type theory include Coq [31],
Idris [8], Lean [11] and Matita [7]. All of them handle code
that we created based on Example 2.1 adequately, but they
fail to type check code that we created based on Example 2.2.

Gundry and McBride. As mentioned above the ap-
proach used in this text is based on the one by Gundry and
McBride [13, 12]. They use a theory with twin types, twin
variables, a ternary notion of judgmental equality, and two
universe levels, where Π-types and Σ-types may only be
formed with types of the first level. They prove that their
system only produces well-typed, most general solutions.

For simplicity we include a type-in-type rule. This allows
us to support complex examples such as the ones we bench-
mark (§4.2), which use terms of the form ΠSet𝐵 and Σ𝐴Set
which cannot be typed in their theory. We justify the cor-
rectness of our approach under certain assumptions that we
hope would hold with a proper stratification of the theory.

Gundry and McBride’s judgmental equality is ternary, of
the form Θ|Γ ⊢ 𝐴 ∋ 𝑡 ≡[𝑣]≡ 𝑢: “𝑡 is equal to 𝑢, with η-long
standard form 𝑣, at type 𝐴 in context Γ and metacontext Θ”.
The metacontext Θ may contain metavariable declarations
(𝛼 ∶ 𝐴) and instantiations (𝛼 ≔ 𝑡 ∶ 𝐴), as well as unification
constraints. The context Γ may contain both single-typed
(𝑥 ∶ 𝑇) and twin-typed (̂𝑥 ∶ 𝑇1‡𝑇2) variables.

The heterogeneous equality introduced above (Defini-
tion 3.5) is inspired by Gundry and McBride’s ternary equal-
ity. However, there are some differences:

(i) Our heterogeneous equality is distinct from the judg-
mental equality. The idea is that it should be possible
to use the methods described in this text in the imple-
mentation of a language like Agda without having to
switch to a new form of judgmental equality.

(ii) Our heterogeneous equality can equate terms of dif-
ferent types. This enables the implementation of Rule
Schema 1 as it is, without any need to, say, check that
the types are equal.

Our implementation generalizes the approach to support
inductive-recursive types and parameterized records with η-
equality, including a unit type with η, with the correspond-
ing adaptations and generalizations of the unification rules.
This allowed us to test the implementation with some com-
plex examples (§4.2). However, we have not proved that
these extensions are implemented correctly.

Gundry and McBride’s approach is formulated with fully
βδ-normalized terms (i.e. with all instantiatedmetavariables
immediately replaced by their bodies), and this simplifies
some things. We have chosen to use terms in β-normal form
but allow δ-redexes to remain in the terms, with the aim of
keeping the theory close to existing implementations such

as Agda. Note that overly eager normalisation of terms can
have adverse effects on performance.
Rule Schema 12 in this text supports the case where

the curried variable (e.g. 𝑥) has a twin type (i.e. 𝑥 ∶
Σ𝐴1𝐵1‡Σ𝐴2𝐵2). This contrasts with the rule in the origi-
nal twin approach [12, expression 4.22] in which the vari-
able must have a single type, but instead, the type may
be of the form 𝑥 ∶ Π𝐴1…Π𝐴𝑛Σ𝑈1𝑈2. We believe that
this difference is not fundamental, presumably both ap-
proaches could be updated to support both features (i.e.
𝑥 ∶ Π𝐴1…Π𝐴𝑛Σ𝑈1𝑈2‡Π𝐵1…Π𝐵𝑛Σ𝑉1𝑉2).

Finally we can mention that Gundry gives criteria to de-
tect, in some cases, whether a constraint is unsolvable.

6 Conclusions
We have presented an approach to higher-order unifica-
tion with dependent types. Our approach is based on that
of Gundry and McBride [13, 12], but it does not use twin
variables. Under certain assumptions—that we hope would
hold in a fully stratified version of the theory—the solu-
tions produced are well-typed (see Lemma 3.19), fulfilling
Goal #1 (§2.3). The approach allows terms to be (at least
partially) unified before their types are known to be (fully)
equal (see §3.5), fulfilling Goal #2 (§2.4).
We have tested the approach by adapting an existing type

checker for a tiny variant of Agda. The implementation can
handle at least one example that Coq, Idris, Lean and Matita
cannot. It can also handle an example that a previous ver-
sion of Agda struggled with in time and space comparable
to or better than that used by the current version of Agda.

Acknowledgments
We want to thank Andreas Abel, Jesper Cockx, Ulf Norell
and Andrea Vezzosi for discussions about higher-order uni-
fication and its implementation in Agda. We also want to
thank Adam Gundry for clarifications about his PhD thesis,
which was one of the starting points for this work. Finally
we thank some anonymous reviewers for useful feedback.

The second author has been supported by a grant from
the Swedish Research Council (621-2013-4879).

References
[1] Andreas Abel, Jesper Cockx, and Nils Anders Danielsson. 2015. Agda

allows “very dependent” types. Agda Issue #1556. Retrieved 2020-06-
30 from https://github.com/agda/agda/issues/1556

[2] Andreas Abel, Jesper Cockx, Nils Anders Danielsson, and Víctor
López Juan. 2020. Regression related to fix of #3027. Agda Issue
#4408. Retrieved 2020-06-30 from https://github.com/agda/agda/
issues/4408

[3] Andreas Abel, Nils Anders Danielsson, and Víctor López Juan. 2017.
Overzealous pruning (reprise). Agda Issue #2876. Retrieved 2020-06-
30 from https://github.com/agda/agda/issues/2876

[4] Andreas Abel, Martin Stone Davis, Ulf Norell, et al. 2017. (No longer
an) Internal error at src/full/Agda/TypeChecking/Substitute.hs:98.

https://github.com/agda/agda/issues/1556
https://github.com/agda/agda/issues/4408
https://github.com/agda/agda/issues/4408
https://github.com/agda/agda/issues/2876

Practical Dependent Type Checking using Twin Types TyDe ’20, August 23, 2020, Virtual Event, USA

Agda Issue #2709. Retrieved 2020-06-30 from https://github.com/
agda/agda/issues/2709

[5] Andreas Abel and Brigitte Pientka. 2011. Higher-Order Dynamic Pat-
tern Unification for Dependent Types and Records. In Typed Lambda
Calculi and Applications (TLCA 2011). https://doi.org/10.1007/978-3-
642-21691-6_5

[6] Robin Adams. 2004. A modular hierarchy of logical frame-
works. Ph.D. Dissertation. Faculty of Engineering and Phys-
ical Sciences, University of Manchester. Retrieved 2020-06-
30 from https://repository.royalholloway.ac.uk/items/2fa04c91-c933-
8da6-3bc4-9d300b20cc54/10/

[7] Andrea Asperti, Wilmer Ricciotti, Claudio Sacerdoti Coen, and Enrico
Tassi. 2011. The Matita interactive theorem prover. In International
Conference on Automated Deduction (CADE 2011). https://doi.org/10.
1007/978-3-642-22438-6_7

[8] Edwin Brady. 2013. Idris, a general-purpose dependently typed pro-
gramming language: Design and implementation. Journal of Func-
tional Programming 23, 5 (2013), 552–593. https://doi.org/10.1017/
S095679681300018X

[9] Thierry Coquand and Gérard Huet. 1988. The calculus of construc-
tions. Information and Computation 76, 2 (1988), 95 – 120. https:
//doi.org/10.1016/0890-5401(88)90005-3

[10] Nils Anders Danielsson and Ulf Norell. 2014. Inconsistent constraints
leading to violated invariants in conversion checking. Agda Issue
#1467. Retrieved 2020-06-30 from https://github.com/agda/agda/
issues/1467

[11] Leonardo de Moura, Jeremy Avigad, Soonho Kong, and
Cody Roux. 2015. Elaboration in Dependent Type Theory.
arXiv:1505.04324 [cs.LO]

[12] Adam Gundry. 2013. Type Inference, Haskell and Dependent Types.
Ph.D. Dissertation. Department of Computer and Information Sci-
ences, University of Strathclyde. Retrieved 2020-06-30 from http:
//adam.gundry.co.uk/pub/thesis/

[13] Adam Gundry and Conor McBride. 2012. A tutorial implementation
of dynamic pattern unification. Unpublished. Retrieved 2020-06-30
from http://adam.gundry.co.uk/pub/pattern-unify/

[14] Gérard P Huet. 1973. The undecidability of unification in third order
logic. Information and control 22, 3 (1973), 257–267. https://doi.org/
10.1016/0304-3975(81)90040-2

[15] Gerard P. Huet. 1975. A unification algorithm for typed 𝜆-calculus.
Theoretical Computer Science 1, 1 (1975), 27–57. https://doi.org/10.
1016/0304-3975(75)90011-0

[16] C. Maria Keet. 2013. Open World Assumption. In Encyclopedia of Sys-
tems Biology. 1567–1567. https://doi.org/10.1007/978-1-4419-9863-
7_734

[17] Víctor López Juan. 2020. Benchmark data for “Practical Dependent
Type Checking Using Twin Types”. https://doi.org/10.5281/zenodo.
3924267

[18] Víctor López Juan. 2020. Practical Unification for Dependent Type
Checking. Licentiate Thesis (draft). Department of Computer Science
and Engineering, Chalmers University of Technology, Sweden. Re-
trieved 2020-06-30 from https://lopezjuan.com/project/licentiate/

[19] Víctor López Juan, Francesco Mazzoli, Nils Anders Danielsson, Ulf
Norell, Andrea Vezzosi, Andreas Abel, et al. 2020. Tog+. https:
//doi.org/10.5281/zenodo.3924250

[20] Víctor López Juan and Ulf Norell. 2018. Internal error in the presence
of unsatisfiable constraints. Agda Issue #3027. Retrieved 2020-06-30
from https://github.com/agda/agda/issues/3027

[21] Lena Magnusson. 1994. The Implementation of ALF – a Proof Editor
based on Martin-Löf’s Monomorphic TypeTheory with Explicit Substitu-
tion. Ph.D. Dissertation. Department of Computer Science, Chalmers
University of Technology.

[22] Lena Magnusson and Bengt Nordström. 1993. The ALF proof editor
and its proof engine. In International Workshop on Types for Proofs
and Programs (TYPES 1993). 213–237. https://doi.org/10.1007/3-540-
58085-9_78

[23] Francesco Mazzoli and Andreas Abel. 2016. Type checking through
unification. arXiv:1609.09709v1

[24] Francesco Mazzoli, Nils Anders Danielsson, Ulf Norell, Andrea Vez-
zosi, Andreas Abel, et al. 2017. Tog - A prototypical implementation
of dependent types. Retrieved 2020-06-30 from https://github.com/
bitonic/tog

[25] Conor McBride. 2010. Outrageous but Meaningful Coincidences: De-
pendent type-safe syntax and evaluation. In Proceedings of the 6th
ACM SIGPLAN Workshop on Generic Programming (WGP’10). https:
//doi.org/10.1145/1863495.1863497

[26] Dale Miller. 1991. A logic programming language with lambda-
abstraction, function variables, and simple unification. Journal of logic
and computation 1, 4 (1991), 497–536. https://doi.org/10.1093/logcom/
1.4.497

[27] César Muñoz. 2001. Proof-term synthesis on dependent-type systems
via explicit substitutions. Theoretical Computer Science 266, 1-2 (2001),
407–440. https://doi.org/10.1016/S0304-3975(00)00196-1

[28] Ulf Norell. 2007. Towards a practical programming language based on
dependent type theory. Ph.D. Dissertation. Department of Computer
Science and Engineering, Chalmers University of Technology, Swe-
den. Retrieved 2020-06-30 from http://www.cse.chalmers.se/~ulfn/
papers/thesis.pdf

[29] Ulf Norell and Catarina Coquand. 2007. Type checking in the presence
of meta-variables. Unpublished. Retrieved 2020-06-30 from http:
//www.cse.chalmers.se/~ulfn/papers/meta-variables.html

[30] Jason Reed. 2009. Higher-Order Constraint Simplification in Depen-
dent Type Theory. In Proceedings of the Fourth International Work-
shop on Logical Frameworks and Meta-Languages: Theory and Practice
(LFMTP ’09). 49–56. https://doi.org/10.1145/1577824.1577832

[31] The Coq Development Team. 2020. Coq 8.11.0. Retrieved 2020-06-30
from https://coq.inria.fr/news/coq-8-11-0-is-out.html

[32] Kevin Watkins, Iliano Cervesato, Frank Pfenning, and David Walker.
2003. A concurrent logical framework:The propositional fragment. In
International Workshop on Types for Proofs and Programs (TYPES 2003).
355–377. https://doi.org/10.1007/978-3-540-24849-1_23

[33] Beta Ziliani and Matthieu Sozeau. 2017. A comprehensible guide to a
new unifier for CIC including universe polymorphism and overload-
ing. Journal of Functional Programming 27 (2017). https://doi.org/10.
1017/S0956796817000028

https://github.com/agda/agda/issues/2709
https://github.com/agda/agda/issues/2709
https://doi.org/10.1007/978-3-642-21691-6_5
https://doi.org/10.1007/978-3-642-21691-6_5
https://repository.royalholloway.ac.uk/items/2fa04c91-c933-8da6-3bc4-9d300b20cc54/10/
https://repository.royalholloway.ac.uk/items/2fa04c91-c933-8da6-3bc4-9d300b20cc54/10/
https://doi.org/10.1007/978-3-642-22438-6_7
https://doi.org/10.1007/978-3-642-22438-6_7
https://doi.org/10.1017/S095679681300018X
https://doi.org/10.1017/S095679681300018X
https://doi.org/10.1016/0890-5401(88)90005-3
https://doi.org/10.1016/0890-5401(88)90005-3
https://github.com/agda/agda/issues/1467
https://github.com/agda/agda/issues/1467
https://arxiv.org/abs/1505.04324
http://adam.gundry.co.uk/pub/thesis/
http://adam.gundry.co.uk/pub/thesis/
http://adam.gundry.co.uk/pub/pattern-unify/
https://doi.org/10.1016/0304-3975(81)90040-2
https://doi.org/10.1016/0304-3975(81)90040-2
https://doi.org/10.1016/0304-3975(75)90011-0
https://doi.org/10.1016/0304-3975(75)90011-0
https://doi.org/10.1007/978-1-4419-9863-7_734
https://doi.org/10.1007/978-1-4419-9863-7_734
https://doi.org/10.5281/zenodo.3924267
https://doi.org/10.5281/zenodo.3924267
https://lopezjuan.com/project/licentiate/
https://doi.org/10.5281/zenodo.3924250
https://doi.org/10.5281/zenodo.3924250
https://github.com/agda/agda/issues/3027
https://doi.org/10.1007/3-540-58085-9_78
https://doi.org/10.1007/3-540-58085-9_78
https://arxiv.org/abs/1609.09709v1
https://github.com/bitonic/tog
https://github.com/bitonic/tog
https://doi.org/10.1145/1863495.1863497
https://doi.org/10.1145/1863495.1863497
https://doi.org/10.1093/logcom/1.4.497
https://doi.org/10.1093/logcom/1.4.497
https://doi.org/10.1016/S0304-3975(00)00196-1
http://www.cse.chalmers.se/~ulfn/papers/thesis.pdf
http://www.cse.chalmers.se/~ulfn/papers/thesis.pdf
http://www.cse.chalmers.se/~ulfn/papers/meta-variables.html
http://www.cse.chalmers.se/~ulfn/papers/meta-variables.html
https://doi.org/10.1145/1577824.1577832
https://coq.inria.fr/news/coq-8-11-0-is-out.html
https://doi.org/10.1007/978-3-540-24849-1_23
https://doi.org/10.1017/S0956796817000028
https://doi.org/10.1017/S0956796817000028

	Abstract
	1 Introduction
	2 Unification
	2.1 Unique Solutions
	2.2 Constraints and Solutions
	2.3 Goal #1: Well-Typedness
	2.4 Goal #2: Out of Order Unification
	2.5 Twin Types

	3 Dependent Type Checking using Twin Types
	3.1 Language
	3.2 A Heterogeneous Notion of Equality
	3.3 A Rule Schema Toolkit
	3.4 A Correctness Property
	3.5 Unification Example

	4 Evaluation
	4.1 Implementation
	4.2 Benchmarks

	5 Related Work
	6 Conclusions
	Acknowledgments
	References

