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Abstract
Functional languages excel at describing complex programs as
the composition of small building blocks. Yet, the performance
properties of such compositions depend on compiler heuristics,
whose behavior is difficult to predict.

In this paper, we introduce an array-programming calculus which
can guarantee elimination of intermediate arrays when composing
two programs, eliminating the cost of composition. The calculus
has linear types and is an extension of Girard’s linear logic with
vector types and a synchronization primitive.

We illustrate the effectiveness of our language by implementing
a number of classical algorithms in a compositional style, and then
compiling these examples to efficient code.

Keywords Array-Programming, Classical Linear Logic

1. Introduction
Consider the diff function, which computes the difference between
each pair of consecutive elements in a vector (a useful operation
for approximating derivatives or interpolating polynomials). A
straightforward implementation of diff in C is as follows:

void diff(size_t n, const double a[], double b[]) {
for(i = 0; i < n−1; i++)

b[i] = a[i+1] − a[i];
}

To compute second order differences (for example, to approximate
second derivatives), one can apply diff twice:

void diff2(size_t n; const double a[], double c[]) {
double b[] = malloc( sizeof(double) ∗ (n−1) );
diff(a,b); diff(b,c);

}

The two calls to diff communicate via an intermediate array, which
needs to be allocated in full. This allocation is undesirable; a C
programmer aiming for performance would likely avoid it, and
instead rewrite diff2 as follows:

void diff2_fused(size_t n, const double a[], double c[]) {
for(i=0; i < n−2; i = i + 1)

c[i] = a[i+2] − 2∗a[i+1] + a[i]; }

[Copyright notice will appear here once ’preprint’ option is removed.]

Hughes [14] has notoriously argued that a key advantage of func-
tional programming is that programs can be written by composition
of simple building blocks, while retaining good run-time behav-
ior. Trusting this composability principle, we could write diff2 as
follows:

diff (x:xs) = zipWith (−) (x:xs) xs
diff [] = []

diff2 = diff . diff

Unfortunately, most compilation strategies will allocate intermedi-
ate data in the above implementation of diff2. Even in a lazy
language, the intermediate list will be allocated piece-wise, but one
still pays the overhead of each individual thunk.

Our aim is to show how the composability principle can be reli-
ably extended to efficient array computations. A possible approach,
used in several functional DSLs [2, 6, 9, 18, 28], is to represent an
immutable array of type A by a function Int → A; and deferring
the reification of such functions into actual arrays to a later phase.
Using such a representation, we can define diff2 as follows:

type Array a = Int → a
diff , diff2 :: Array a → Array a
diff f i = f ( i + 1) − f i
diff2 = diff . diff

The above code does not allocate intermediate data structures.
However, this gain comes at the price of duplicated computations.
Indeed, diff accesses each index in the array twice; thus, when
composing it with itself, the first set of differences will be computed
twice. While a sufficiently smart compiler may spot the duplication
in the later code-generation phases, this leaves the programmer in
the dark: the only way to predict the performance behavior of the
generated code is to have an intimate knowledge of the optimization
passes implemented in the compiler, which may even vary between
versions. Instead, we want a logical calculus in which gives strong
guarantees to the programmer, so that they can reliably predict the
behavior of generated code from the types of the arrays involved.
Our contributions are as follows:

• We extend classical linear logic [11] with vector types (
⊗

n A,˙
n A, §n A) and a synchronization primitive (Sec. 2.1). The

resulting language is functional at its heart, because any compu-
tation can be made into a first-class value, passed as an argument,
and composed with others. We call this language CLLn.

• We guarantee that every composition of well-typed functions
can be fused (in the sense of Wadler [31]), thus removing the
allocation of any intermediate storage. Fusion techniques that
currently rely on rewrite rules can instead be modeled as type-
directed transformations. By enforcing linearity we guarantee
that these transformations preserve the computational cost, thus
avoiding the need for heuristics (Sec. 4).
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• Yet, programmers are given the opportunity to explicitly use
allocation and scheduling primitives. Indeed, memory allocation
and sequential scheduling correspond to the conversion between
different array types (Sec. 2.8). In practice, this means that in
any given function composition, the types indicate exactly if an
allocation (or a sequential traversal) can be avoided.

• We provide a cost model using an interpretation of CLLn

programs into the λ-calculus. This same interpretation is used
to provide a compiler from CLLn programs to structured,
imperative C code.

• We implement kernels for FFT, 1-dimensional wave propagation
and QuickHull in our language, and show how fusion signifi-
cantly improves running time (Sec. 5).

2. Syntax and Examples
In this section we describe CLLn and motivate its design using a
number of examples. The syntax and typing rules of this calculus
are summarized in Fig. 1. We leave out issues such as syntactic
sugar, type inference, etc.: CLLn is a core calculus for a full-fledged
language.

2.1 CLL as a programming language
In the Linear Logic of Girard [11] (which we abbreviate CLL, for
“classical”), proof derivations can be interpreted as programs (as
per Curry-Howard). The propositions at the root of the derivation
are the input and output arguments of the program; computation is
performed by applying proof rules, yielding a derivation tree.

The defining characteristic of a linear logic is the lack of a
weakening rule (no hypotheses can be discarded), or a contraction
rule (conclusions must be proved as many times as they appear).
Consequently, in linear logic it is valid to treat input values and
results dually. Technically every type A has a dual A⊥, and returning
a result of type A is equivalent to consuming a value of type A⊥
(Fig. 2). Furthermore, dualization is involutive: (A⊥)⊥ = A.

Duality makes for an economic design, particularly suitable to a
core language. Indeed, there is no need to distinguish inputs from
outputs, so both can be written on any one side of the turnstile.
Here, we chose the left side, to indicate that they are values to be
consumed by the program. Consequently our typing judgment has
the form Γ ⊢ a, where Γ is a context and a is a program discharging
all the inputs in Γ. Such a presentation means that it is enough to
have eliminators, as introduction is expressed as the elimination of
the dual. Effectively, duality cuts in half the number of constructions
one has to deal with. We make further use of duality via the self-dual
sequence-type operator (Sec. 2.3).

We adopt the convention that contexts are ranged over by capital
Greek letters. Further, when contexts are mentioned on either side
of a comma, they must be disjoint; and contexts are order-agnostic.

2.2 Cut-Elimination as a Cost-Free Abstraction
The cut rule represents the composition of programs a and b. As
a first approximation, one can computationally interpret the above
cut as first running b, storing its result into y, a memory area large
enough for a value of type A, and then running a, which accesses
the data via x. However, in CLL the type A may be a complicated
protocol, therefore the flow of execution may jump back and forth
several times between a and b. Hence, it is useful to think of the
above cut as running a and b concurrently (as co-routines).

In CLL (and indeed CLLn), every individual cut can be elimi-
nated regardless of the definition of the composed programs (they
may themselves contain cuts). Cut elimination is traditionally used
to give a computational interpretation to the logic. In this paper, we
realize this property by defining an additional rule, logically equiv-
alent to cut, but which is recursively defined instead of postulated,

so it is guaranteed to disappear from the program (Thm. 5). We call
this rule fuse: indeed, it effectively fuses the two programs that it
connects, without any intermediate data structure. Furthermore, in
our setting, cut-elimination does not worsen the run-time behavior
of the program (Thm. 6). This property means that the abstraction
mechanism provided by fuse (composition and naming of interme-
diate results) is implemented in a manner that incurs no overhead.
Consider as an example a fuse on the multiplicatives: tensor (⊗),
and par (`) :

fuse{z̄ : A⊥ ` B⊥ 7→ connect z̄ to{x̄ 7→ a; ȳ 7→ b}
z : A ⊗ B 7→ let x, y = z; c}

The let instruction decomposes the tensor z and makes its con-
stituents x and y available to the program c. Conversely, connect
deals with the dual, by making each of the components available to
independent programs a and b. The reduct is two compositions:

fuse{x̄ : A⊥ 7→ a; x : A 7→ fuse{ȳ : B⊥ 7→ b; y : B 7→ c}}

Finally, remark that linear implication (⊸) is an arrow connective
which models functions in linear logic. In CLL, we can define it in
terms of par: A ⊸ B ≡ A⊥ ` B.

2.3 Arrays
While Girard’s CLL offers strong computational guarantees, few
useful programs can be implemented directly in it. In this section,
we show how to extend CLL with array primitives, and demonstrate
that this extension is enough to describe useful programs.

Sizes and predicates First we extend the type system with size
variables. Size variables live in an implicit, intuitionistic side of
the context, unaffected by linearity constraints. Thus, they can be
copied and used any number of times.

Type-level size terms are constructed from size variables ac-
cording to the following grammar (where α is a non-negative size
variable, and c is an integer constant).

n,m ::= α | n + m | n − m | c · n | c

Predicates about sizes are expressed as single inequalities between
two size expressions (≥, ≤, >, <, =, ,). The resulting expressions
are entirely within the theory of Quantifier-Free Linear Integer
Arithmetic, which Barrett et al. [4] shows as efficiently decidable.
The decidability allows us to check, for instance, that all size
expressions must be provably ≥ 0 in the context in which they
are used. In Sec. 6 we discuss the merits and limitations of this
approach.

Both sizes and predicates have their corresponding existential
and universal quantifiers. A function f of type f : ∀α : N.A[α] ⊸
B[α] can be applied to any size n, yielding f @n : A[n] ⊸ B[n].
Conversely, to implement f one eliminates of a variable of the dual
type, f : ∃α : N.A[α] ⊗ B[α]⊥.

Preconditions work in a similar way. We can restrict the above
function to work on sizes α ≥ 1 by introducing a precondition p:

f 1 : ∀α : N.∀p : α ≥ 1.A[α] ⊸ B[α]
The implementation of f 1 will eliminate an existential, thus obtain-
ing a witness of the fact that α ≥ 1. This witness will be carried in
the context, and can be used as an additional assumption about α
when eliminating A[α] ⊗ B[α]⊥.

f 1 : ∃α : N.∃p : α ≥ 1.A[α] ⊗ B[α]⊥

By contrast, the user of f 1 can only use the function in those
contexts where α ≥ 1 holds. Whether this is the case is decided by
the type-checker based on the laws of arithmetic, and the predicates
already in the context.
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x : A, y : A⊥ ⊢ x ↔ y
Ax Γ, x : An ⊢ a ∆, y : A⊥ ⊢ b

Γ,∆n ⊢ cut{x : An 7→ a; y : A⊥ 7→ b}
Cutn Γ ⊢ a ∆ ⊢ b

Γ,∆ ⊢ mix{a;b}
Mix x : ‹ ⊢ yield to x

‹

Γ ⊢ a
Γ, x : 1 ⊢ let ⋄ = x; a

1 ⊢ halt
Halt

Γ, x : 0 ⊢ dump Γ in x
0 Γ, x : A, y : B ⊢ a

Γ, z : A ⊗ B ⊢ let x, y = z; a
⊗

Γ, x : A ⊢ a ∆, y : B ⊢ b
Γ, z : A ` B,∆ ⊢ connect z to{x 7→ a; y 7→ b}

` Γ, x : A ⊢ a Γ, y : B ⊢ b
Γ, z : A ⊕ B ⊢ case z of{inl x 7→ a; inr y 7→ b}

⊕

Γ, x : A ⊢ a
Γ, z : A& B ⊢ let inl x = z; a

&1
Γ, x : B ⊢ a

Γ, z : A& B ⊢ let inr x = z; a
&2

Γ, x : An, y : Am ⊢ a
Γ, z : An+m ⊢ let x, y = splitn z; a

Splitn

Γ, x : Am ⊢ a
Γ, z :

⊗
m A ⊢ let x = slice z; a

⊗ Γ, x : A ⊢ a ∆, y : A ⊢ b
Γn,∆m, z :

˙
n+m A ⊢ coslice z{x 7→na; y 7→mb}

˙

Γ, y : C, x : A ⊢ a ∆, y : C, x : B ⊢ b
Γn,∆m, x1 : §n A, x2 : §m B, y1 : §n+m C ⊢ traverse{y1 as y, x1 as x 7→na; y1 as y, x2 as x 7→mb}

§

Γ, x : D⊥n ⊢ a ∆, y : Dkn ⊢ b
Γ,∆ ⊢ sync{x : D⊥n 7→ a; y : Dkn 7→ b}

synckn
Γ, x : D⊥ ⊢ a ∆, y : §m(D ⊗ (D⊥&1)) ⊢ b

Γ,∆ ⊢ loop{x : D⊥ 7→ a; y : §m(D ⊗ (D⊥&1)) 7→ b}
loop

Γ, x : A[n] ⊢ a
Γ, z : ∀α : N.A[α] ⊢ let x = z@n; a

∀ Γ, x : A[β] ⊢ a
Γ, z : ∃α : N.A[α] ⊢ let x〈β〉 = z; a

∃ Γ, x : A ⊢ a n ≤ m
Γ, z : ∀p : n ≤ m.A ⊢ let x = z@⊤; a

∀

Γ, x : A ⊢ a
Γ, z : ∃p : n ≤ m.A ⊢ let x〈p〉 = z; a

∃ Γ ⊢ a Γ ⊢ b
Γ ⊢ compare n,m{≥ 7→ a; ≤ 7→ b}

compare

Figure 1: Typing rules. For concision, we show only the binary versions of coslice and traverse, but any arity is valid. The sync and loop
rules are both restricted to data types, and we use the name D to highlight this fact. The rules are explained in pedagogical order in section 2.

A ⊕ B A⊥& B⊥ additives
0 ⊤ additive units

A ⊗ B A⊥ ` B⊥ multiplicatives
1 ‹ multiplicative units⊗
n A

˙
n A⊥ arrays

§n A §n A⊥ sequential arrays
A A⊥ primitive atoms

∃α : N.A[α] ∀α : N.A[α]⊥ size quantifiers
∃p : n ≤ m.A ∀p : n ≤ m.A⊥ predicate quantifiers

Figure 2: List of type connectives. The types in the left column are
dual to the types in the right column, and vice versa.

As can be seen (or rather, not seen) in Fig. 1, size variables and
predicates about them are carried implicitly in the context. One can
introduce new predicates by branching dynamically with compare.
If one branches on n ≤ m, then the left branch will can make use of
n ≤ m as an assumption, whereas the right branch can make use of
the negation, m < szN .

Contexts We first extend the syntax of contexts with special
support for n copies of a type. (Γ ::= – | Γ, x : An).

While An may be intuitively understood as n copies of A, the
binding x : An introduces a single variable x of size n. The size n
can contain symbolic variables in general.

Accessing individual copies is done using special-purpose rules:

• We omit the superscript when it is equal to 1. A variable can
be eliminated only if its size is equal to 1 in the current context.
This is decidable (see Sec. 2.3).

• The shorthand Γn multiplies all superscripts in Γ by n. Note
that, because one can only multiply by a constant in sizes, if n
is not a constant, then all the variables in Γ must have constant
size.

We stress that superscripts are part of the context, not part of the
type. In particular, they have no dual.

Tensor Arrays Our first array operator is the n-way generalization
of tensor, and written

⊗
n A. The tensor array eliminator (slice)

consumes an array z :
⊗

n A and yields n values of type A in the
variable x. The continuation program a consumes each of the n
values exactly once in the order it pleases.

Par Arrays The dual of the tensor array is the par array, written
(
˙

n A). By duality, the producer of a par array must be able to
produce its elements in any given order. Hence, the eliminator
of

˙
n A (coslice) must ensure that each element is handled

independently. This is realized by the
˙

rule, where the body
a has access to a single element of the array, and an nth fraction
of the context. However, all elements need not be processed in the
same way. In general the programmer can specify as many different
programs as the length of the array. In Fig. 1, a is used for elements
up to index n, and b for the m elements thereafter.

Sequences We have seen that the consumer of a tensor array
dictates the processing order, while the consumer of a par array
must accept any requested order. There is a middle way: to use a
canonical order of processing which is fixed by the programming
language. We call a fixed-order array a sequence, and write it §n A.
The fixed order is reflected in the logical self-duality of the type
operator: (§n A)⊥ = §n A⊥. As in par arrays, elements from each
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sequence are processed one at a time; but, as with tensor arrays, a
computation can involve elements from more than one sequence.

2.4 Basic functions: zip and saxpy
One example of a basic building block is zipWith(f), which
combines two tensor arrays index-wise, via a combination function
f .

zipWith(f) ≡ xs :
⊗

n A, ys :
⊗

n B, zs :
˙

n C⊥ ⊢
let xs1 = slice xs; let ys1 = slice ys;
coslice zs{zs1 7→nf[xs1, ys1, zs1]}

Using zipWith we can implement the so called saxpy procedure,
which multiplies the vector x by a scalar a and adds it to the vector
y. In a linearly-typed language, we must indicate that we need n
copies of a, by wrapping it in a vector. We can implement saxpy
by gluing zip(+) with zip(∗), as follows:

saxpy ≡ xs :
⊗

n A, ys :
⊗

n A, a :
⊗

n A, rs :
˙

n A⊥ ⊢
fuse{τ :

˙
n R
⊥ 7→ τ ↔ zipWith(∗)[a, xs]

τ1 :
⊗

n R 7→ rs ↔ zipWith(+)[τ1, ys]}

The above implementation uses an intermediate array containing
the a ∗ x. We can get rid of it by performing fusion:

let a1 = slice a; let xs1 = slice xs; let ys1 = slice ys;
coslice rs{rs1 7→ncut{z̄ : A 7→ (+)[z̄, ys1, rs1]

z : A⊥ 7→ (∗)[a1, xs1, z]}}

The above code still has a cut on the type A, because we have
assumed that A is abstract. See end of Sec. 4.1 for a discussion.

2.5 Scheduling with mix and halt
The mix and halt rules are extensions of CLL which preserve
cut-elimination (Fig. 1). The halt rule states that a program can
terminate even if there is no other program to yield to. The mix rule
is similar to cut, in the sense that it glues two programs together.
However, in the mix case, there is no communication whatsoever
occurring between the programs. Hence, they can be executed in
any order: there is total freedom in the order of computation, which
mix has to decide.

2.6 Recovering weakening and contraction
One may worry that linearity requires us to define functions and
values once for each time that they are used. For example, in the
examples from Sec. 2.4, if one wants to apply a function to an array
of length n, seems to need to define the same function n times.
The rule Cutn allows using a value of any type (e.g. a function) a
bounded number of times (n). This does not fully solve the problem,
because, in order to use Cutn, the values in the context used in the
left side of the cut must themselves have arity n.

Furthermore, observe that any number values of type 1 ⊕ 1 can
be discarded and duplicated just with the eliminators &1, &2 and
⊕. For our system, any value constructed only from atomic types
(A) and positive connectives (⊕, ⊗,

⊗
, 1, ∃) is considered a data

type D. By applying synck such a value can be computed only once
and used up to k times.

Conversely, whether a value is used or not may depend on the
inputs to the program. For data types, one may make 0 copies with
sync0, which effectively discards the value. In general, weakening
is simulated with types of the form A&1, which can either be used
as a value of A, or ignored as a value of type 1. Note that allowing
weakening for general types would allow constructing values of any
type by discarding their dual, thus rendering the calculus unsound.

In Sec. 6 we discuss how this approach differs from the more
traditional notion of exponentials.

fuse{τ :
˙

n R
⊥ 7→ τ ↔ zipWith(∗)[a, b]

τ1 :
⊗

n R 7→
let τ2 = slice τ1;
loop{mw : R⊥ 7→ mw ↔ 0.0

mu : §n+1(R ⊗ (R⊥&1)) 7→
traverse{mu as mu1 7→n

let τ3, τ4 = mu1; let inl τ5 = τ4;
τ5 ↔ +[τ3, τ2]

mu as mu2 7→1
let τ6, τ7 = mu2; let inr τ8 = τ7;
let ⋄ = τ8; r ↔ τ6}}}

let a1 = slice a; let b1 = slice b;
loop{mw : R⊥ 7→ mw ↔ 0.0

mu : §n+1(R ⊗ (R⊥&1)) 7→
traverse{mu as mu1 7→nlet τ, τ1 = mu1; let inl τ2 = τ1;

cut{w : R 7→ τ2 ↔ +[τ,w]
v : R⊥ 7→ v ↔ ∗[a1, b1]}

mu as mu2 7→1let τ3, τ4 = mu2; let inr τ5 = τ4;
let ⋄ = τ5; r ↔ τ3}}

Figure 3: Dot product, before and after cut elimination.

2.7 Loops
As explained in Sec. 2.3, the producer and the consumer of a
sequence agree in advance on a specific processing order. We
specifically chose a left-to-right sequential order. This particular
order enables operations where the computation on each element of
the array depends on the values of some or all of the previous
elements. This possibility is realized by the loop rule. When
applying the rule, the programmer chooses a type D and a size m.
Then, they can provide an initial value of type D, and, sequentially,
m functions of type D ⊸ D ⊕ 1. (In many but not necessarily all
cases, all these functions have the same implementation.) At each
step, the current function receives a value and may chose to provide a
new one (by returning an D), or keep the old one (by returning a unit
value). The produced value (starting with the initial one) becomes
the input to the next function; the last produced value is discarded.
In sum, the loop rule produces an obligation of processing values
of type D in a left-to-right sequence.

As an example of loop, we implement a dot-product function,
by composing zipWith(∗) with a loop computing the sum of the
result. After cut-elimination, a single loop remains (Fig. 3).

2.8 Conversions between array types
In this section we explain how array conversions correspond to
traversal or allocation.

Tensor to Sequence We want to implement a function of type⊗
n A⊸

˙
n A, that is, derive

⊗
n A, §n A⊥ ⊢. The derivation is

a direct application of slice and traverse:

tensorToSequence ≡ a :
⊗

n A , b : §n A⊥ ⊢
slice a { a : An 7→ traverse { b as b’ 7→ a ↔ b’ } }

Sequence to Par In this case, we want to inhabit §n A ⊸
˙

n A,
or derive §n A,

⊗
n A⊥ ⊢. By duality, the implementation is the

same as the previous conversion.

Par to Tensor We want to implement a function of type
˙

n D ⊸⊗
n D. That is, derive

˙
n D,

˙
n D⊥ ⊢We have two arrays which

want to control the order of computation. What we need is an
intermediate synchronization mechanism (syncn)), which presents
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a tensor-like array to two programs, pretending to both of them that
they are in control (Fig. 1). The conversion is then implemented as

freeze ≡ xs :
˙

n D, ys :
˙

n D⊥ ⊢
sync{z : D⊥n 7→ coslice xs{xs1 7→nz ↔ xs1}

z̄ : Dn 7→ coslice ys{ys1 7→n z̄ ↔ ys1}}

Note that this derivation is only valid if D is a data type (Sec. 2.6).
In particular, the rule sync2 corresponds to a conversion D ` D ⊸
D ⊗ D.

Observe that a general rule A ` B ⊸ A ⊗ B would be unsound,
since it allows the construction of a value of the empty type 0 ⊗ ⊤.
In a model where syncn is interpreted as allocating a thunk to be
filled later, the resulting program would block at runtime because
of an implicit cyclic dependency.

Summary The conversion from tensor to sequence and then to par
correspond to traversals, while the conversion from par to tensor
corresponds to explicit allocation of intermediate results.

⊗
n A

§n A

˙
n A

traverse traverse

sync

The other conversions can be implemented by compositions of the
above. A noteworthy case is the conversion from tensor to par, via an
intermediate sequence. If one eliminates the cut which implements
the composition, then the intermediate sequence is gone: and the
conversion is a traversal involving no sequences, but only the vectors
in context.

tensorToPar ≡ x :
⊗

n A, y :
⊗

n A⊥ ⊢
let x1 = slice x; let y1 = slice y; traverse{ 7→ny1 ↔ x1}

2.9 Difference operator using linear arrays
In this section we demonstrate the interaction between different
array types with the diff operator example from Sec. 1. We will also
see some shortcomings of programming with par and tensor arrays,
which justify the introduction of sequences.

Implementing the difference operator using tensor arrays poses
two difficulties. First, in our example each element of the input of
size n is accessed twice. Because we work with linear types, we
need two copies of the input array; that is, the input should have
type

⊗
2

⊗
n A. Second, the stencil can be applied only on a

sufficiently central portion of the array: the borders must be treated
specially. Here we will use use a wrap-around strategy: the template
for our stencil computation is

diff = zipWith(−) (rotate1 x) y

where x and y are the two copies of the input array and rotate1 is
a function which rotates the elements in an array by one position to
the left, so that the first one ends up in the last place.

Implementing rotate1 is done by splitting off the first element
(with the split rule), and then appending it to the end of the array
(using coslice):

rotate ≡ i :
⊗

n+1 A, o :
˙

n+1 A⊥ ⊢
let i1 = slice i; let x, y = split1 i1;
coslice o{o1 7→1x ↔ o1; o2 7→ny ↔ o2}

After fusion, the implementation of diff looks like this:

diff ≡ a : §n R , b : §n R⊥ ⊢
loop { x′ 7→ x′ ↔ 0 } x : §n(R ⊗ (R⊥&‹)) 7→
traverse { a as a0 , b as b0 , x as x0 7→

let x0 , x0 ′ = x0
sync { a′ : R 7→ a′ ↔ a0 } { d : R2 7→

split1 d { a1 a2 7→ mix { let inl a2 = a1 ; a2 ↔ x0 ′
; −[a2 ,x0 ,b0 ] } }

diff2 ≡ a : §n R , b : §n R⊥ ⊢
cut { x′ 7→ diff a x′ }

{ x 7→ diff x b }

Figure 4: First and second order differences in CLLn.

diff ≡ z :
⊗

2

⊗
n+1 A, o :

˙
n+1 A⊥ ⊢

let z1 = slice z; let x, y = split1 z1; let x1 = slice x;
let a, b = split1 x1; let y1 = slice y; let c, d = split1 y1;
coslice o{o1 7→n(−)[b, d, o1]; o2 7→1(−)[a, c, o2]}

One issue with coslice is that handling each element requires
branching on its index to chose which program to run. Such a test
within a tight loop performs badly. In most programming languages,
lifting a conditional out of a loop is a special purpose optimization.
In our framework, this lifting comes automatically, as part of cut-
elimination.

Diff2 using tensor arrays Now, let us implement diff2 as the
composition of the above function with itself. We have two options
for the composition. Either i) we allocate an intermediate array to
store the intermediate result and obtain two copies of it (sync2) to
feed to the next application of diff, or ii) we require 4 copies of the
array as input, and compute the intermediate result twice.

Even though the behavior (sharing or duplication, respectively)
of the composition is predictable, neither situation is quite satisfying.
What we would like to obtain is an efficient loop, as shown in the
C code in the introduction. The source of inefficiency is that diff is
able to access and produce elements in any arbitrary order.

Diff2 using sequences By restricting the access order using
the sequence type, we can implement diff2 without duplicating
computation or allocating any intermediate arrays. To guarantee
that each element is consumed only once, we can implement diff by
traversing the array once (Fig. 4). We use zero-padding to adjust the
size of the input array; producing a smaller sequence or wrapping
around are other supported approaches.

After fusing, we obtain a single traversal of the input array, with
constant allocation of memory (Fig. 5). This matches closely the
diff2_fused example in Sec. 1. Furthermore, source and destination
arrays are accessed in a sequential, cache-friendly way (Fig. 6).

3. Semantics of CLLn

We give a computational interpretation of CLLn into λ-terms.
This demonstrates a correspondence between CLLn and sequential,
single-threaded programs.

3.1 Double-negation translation
While the CLL can be interpreted as concurrent processes [32],
a literal interpretation of this semantics would mean that the
generated code would not be very efficient: running concurrent,
communicating processes is expensive. Fortunately, CLL can be
embedded in the lambda calculus by means of a double-negation
translation. This embedding has the effect of assigning an order of
evaluation, which in turns means that single threaded, efficient code
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diff2 ≡ a : §n R , c : §n R⊥ ⊢
loop { x′ 7→ x′ ↔ 0 } x : §n(R ⊗ (R⊥&‹)) 7→
loop { y′ 7→ y′ ↔ 0 } y : §n(R ⊗ (R⊥&‹)) 7→
traverse { a as a0 , c as c0 , x as x0 , y as y0 7→n

let x1 , x1 ′ = x0
let y1 , y1 ′ = y0
sync { a′ : R 7→ a′ ↔ a0 } { d0 : R2 7→

split1 d0 { a1 a2 7→ sync { b′ : R 7→ −[a1 ,x1 ,b′] }
{ d1 : R2 7→ split1 d1 { b1 b2 7→ mix {

let inl x2 ′ = x1 ′ ; x2 ′ ↔ x0 ′
; let inl y2 ′ = y1 ′ ; y2 ′ ↔ b2
; −[b1 ,y1 ,c] } }

Figure 5: Fused second-order differences

void diff2(size_t n, double∗ a, double∗ c) {
double x = 0, y = 0;
for (size_t i = 0; i < n; i++) {

double a1 = a[i];
double b = a1 − x;
c[i] = b − y;
x = a1;
y = b;

}
}

Figure 6: Compiled code for fused, second-order differences. Redun-
dant, static single assignments to local variables have been removed
for readability.

can be generated. This translation is standard [15], thus we recall
only the translation of types.

We assume the existence of a type of effects which we write
as ⊥⊥. he interpretation of a CLLn

p term will always have type ⊥⊥,
representing the effects or results of the computation. The effect type
can be any monoid, whose operations interpret mix (composition,
≫) and halt (unit, nop).

Definition 1. We define the translation of a type A to a polymorphic
lambda calculus type A• as follows:

A• = (A→⊥⊥)→⊥⊥ A⊥• = A→⊥⊥

0• = (∅→⊥⊥)→⊥⊥ ⊤• = ∅→⊥⊥

1• = ⊥⊥→⊥⊥ ‹• = ⊥⊥

(A ⊕ B)• = (A• + B• →⊥⊥)→⊥⊥ (A& B)• = A⊥•
+ B⊥• →⊥⊥

(A ⊗ B)• = (A• × B• →⊥⊥)→⊥⊥ (A ` B)• = A⊥• × B⊥• →⊥⊥

(
⊗

n A)• = ((N→ A•)→⊥⊥)→⊥⊥ (
˙

n A)• = (N→ A⊥•
)→⊥⊥

(§+n A)• = ((N→ A•)→⊥⊥)→⊥⊥ (§−n A)• = (N→ A⊥•)→⊥⊥

(∃n : N.A[n])• = (N × A[n]• →⊥⊥)→⊥⊥ (∀n : N.A[n])• = N × A[n]• →⊥⊥

(∃p : n ≤ m.A)• = A• (∀p : n ≤ m.A)• = A•

The translation of tensor and par arrays is a straightforward
extension. However, the translation of sequences requires work.
Indeed, the double negation translation works only for connectives
which have a distinct dual. This restriction means that sequences
must be assigned a polarity before the standard double-negation
translation can apply: every neutral sequence operator must be
refined into either a positive sequence §+n A or a negative sequence

§−n A, where (§+n A)⊥ = §−n A⊥. The next section explains how
to do this polarity assignment.

3.2 Polarized sequences: CLLn
p

In terms of process semantics, the self-duality of the sequence
operators means that neither producer nor the consumer of a
sequence controls the program flow. In this section we show how to
impose a polarization to sequences; which semantically corresponds
to statically assign control to a side of a cut on a sequence.

The reason not to use polarized sequences from the beginning is
that cut elimination can already be done on unpolarized sequences.
This way, we get two complementary ways of understanding the
calculus: one operational, and one denotational. Furthermore, if
sequences are used only as an the type of intermediate values,
which are later fused away, then the issue of polarization can be
side-stepped altogether.

We call the calculus with polarized sequences CLLn
p . It differs

from CLLn in the following respects:

• The axiom rule only applies to atomic types. One may obtain
the equivalent of the axiom rule for other types by applying the
eliminators for the positive and negative types in succession.

• The type §n A is replaced by the types §+n A and §−n A. For
both §+n A and §−n A, the elements of the sequence are meant
to be consumed (respectively produced) in a pre-agreed order.
However, when consuming a value of type §−n A, it is the
producer value that dictates the pace at which the elements
are processed (when to move to the next element); as opposed
to §+n A, where the consumer is the one in control.

• The traverse rule may eliminate at most one sequence of type
§−n A, because the sequence controls the rate at which elements
are produced.

• Values can be read and written from memory at any pace,
therefore, sync and loop introduce sequences of type §+n A.

In all other respects, the rules for CLLn
p match those of CLLn.

(Thm. 5 on cut-elimination theorem generalizes directly to CLLn
p)

We now explain the correspondence between both calculi.

Theorem 1. Every CLLn
p proof corresponds to a CLLn proof

Proof. Replace each occurrence of §−n A or §+n A in the proof by
§n A. The result is a valid CLLn proof. □

Unfortunately, the map given by Thm. 1 is not surjective:
for certain CLLn proofs, it is not enough to annotate sequences
with polarities to obtain an equivalent CLLn

p proof. Indeed, the
alternatives of a case may each place non-local requirements on
the polarities which cannot be reconciled.

A sequence polarization scheme There exists an embedding of
CLLn into CLLn

p , albeit a non-trivial one. The underlying idea is
that, when a multiplicative connective is eliminated (a product A`B
or a `-array

˙
n A), the producer and the consumer will exchange

information on which element of the product will ultimately have
control of the execution flow. This flow will ultimately depend on
the types in the context, and how they are split among the different
branches of the ` and coslice rules.

Definition 2. We define the positive A+ and negative A− transla-
tions of a type as follows.

(A ` B)+ = (A− ` B+)&(A+ ` B−)

(
˙

n A)+ =
˙

n A−&(∀i : N.
˙

i A− ` A+ `˙
n−i−1 A−)

(§n A)+ = §+n A+
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The translation of all other connectives is merely structural, e.g.
(A ⊗ B)+=A+ ⊗ B+. Additionally, we define A−=A⊥+

⊥

Theorem 2 ((Sequence polarization) ). If ∆ ⊢ holds in CLLn, then

• ∆+ ⊢ holds in CLLn
p , and

• for every Γ and X such that ∆ = Γ,X then Γ+,X− ⊢ holds in
CLLn

p .

Proof. The translation proceeds by induction on the proof deriva-
tion. For each elimination rule there will be two cases, depending
on whether the name being eliminated is in Γ (positive name, e.g.
z+) or in X (negative name, e.g. z−).

When the translation operator commutes with a connective, the
rule can be applied as-is. When the translated type offers a choice,
it is resolved in such way that the invariants are preserved. In the
following example, because the left branch has negative name of
type X , the negative name is introduced in the right branch:

( Γ, g : X, x : A ⊢ a ∆, y : B ⊢ b
Γ, g : X, z : A ` B,∆ ⊢

`)−g =

Γ+, g− : X−, x+ : A+ ⊢ a ∆+, y− : B− ⊢ b
Γ+, g− : X−,∆+, x : A+ ` B− ⊢

`
Γ+, g− : X−, z+ : (A− ` B+)&(A+ ` B−),∆+ ⊢

&2

When the translated type forces a choice, all the alternatives
introduce at most one negative name. For example,

( Γ, x : A, y : B ⊢ a
Γ, z : A ⊗ B ⊢

⊗)−z =

Γ+, x+ : A+, y− : B− ⊢ a
Γ+, z− : A+ ⊗ B− ⊢

⊗ Γ+, x− : A−, y+ : B+ ⊢ a
Γ+, z− : A− ⊗ B+ ⊢

⊗

Γ+, z− : A+ ⊗ B− ⊕ A− ⊗ B+ ⊢
⊕

In particular, when a traverse rule is applied, there will only be at
most one negative name in the context, and therefore, at most one
negative sequence.

□

Theorem 3. Cut elimination commutes with the polarizing trans-
lation.

Proof. Assume that an instance of fuse in derivation D can be
eliminated in n steps. By case analysis, for each single rewriting step,
the polarizing translation commutes. By induction, the polarizing
translation commutes with the application of all steps, and, in turn,
with the elimination of any number of fuse instances. □

3.3 From CLLn
p proofs to λ-terms

While our double-negation embedding follows the standard pattern,
the addition of new constructions, such as n-ary occurrences of
types in a context or memory primitives, requires some care.

We chose to represent An as two values N,N→ A•, where the
first value is the index of the first element. Recall that a scalar type A
in the context is in fact a shorthand for A1, and represented as such.
Thus when applying an scalar eliminator, the variable is indexed by
applying the first component to the second.

(let x, y = z; a)• =
let s, µ = z in µ s (λ(x,y) 7→let y0 = (0, λ_. y) in
let x0 = (0, λ_. x) in a•[Γ,x0,y0])

When such n-ary contexts are split (in coslice, traverse and cut),
we re-index. For example:

(coslice z{x 7→na; y 7→mb})• =
let s, µ = z in µ s (λi.
if 0 ≤ i ∧ i < n then λx.
let x0 = (0, λ_. λκ. κ ∝ x) in let s0, µ0 = Γ in
(λγ0. a•[γ0,x0]) (i+s0, µ0)

else λy. let y0 = (0, λ_. λκ0. κ0 ∝ y) in
let s1, µ1 = ∆ in (λδ0. b•[δ0,y0]) (−n+i+s1, µ1))

Second, the rules sync and loop require a notion of memory.
Memory is modeled as a key-value store, where each key of typeKd
corresponds to a value of type d. Memory accesses can be embeded
in the effect type by assuming the following functions. We need
to allocate : (Kd →⊥⊥) →⊥⊥ new keys, write : (Kd → d) →⊥⊥
values to them, and read : (Kd → d →⊥⊥) →⊥⊥ them back. The
above structure can be constructed on top of any monoid, following
Thielemann [29]. Using this structure, sync can be translated as
follows:

(sync{x : A⊥n 7→ a; y : An 7→ b})• =
allocate (λd0. . . . (allocate (λdn−1.
(let x = (0, λ_. (n, λi. write di)) in a•[Γ,x]) ≫
(let y = (n, λi0. read di) in b•[∆,y]))))

In sum, by composing sequence polarisation and the double-
negation embedding, we obtain a translation from a CLLn term
Γ ⊢ t into a term Γ• ⊢ t• :⊥⊥ in the polymorphic lambda cal-
culus. For this translation, cut elimination results in semantically
equivalent terms (Thm. 4).

Theorem 4. For any two programs a and b communicating via
type A, fuse{x : An 7→ a; y : A⊥ 7→ b}• ≈βη cut{x : An 7→ a; y :
A⊥ 7→ b}•

Proof. By case analysis on each cut-elimination rule.
For example, when eliminating a cut between the consumer of a

` with the consumer of a ⊗:

n`⊗
(fuse{z :

¸
n+m

A⊥ 7→ coslice z{x 7→na; y 7→mc}; z̄ :
⊗
n+m

A 7→

let x̄ = slice z̄;b})• de f
= let z̄ = (0, λz. let z0 =

(0, λ_. z) in let s0, µ0 = z0 in µ0 s0 (λi. if 0 ≤ i ∧ i <

n then λx. let s1, µ1 =

Γ in (λγ0. a•[γ0, x]) (i + s1, µ1) else λy. let s2, µ2 =

∆ in (λδ0. c•[δ0, y]) (−n + i + s2, µ2))) in let s, µ =

z̄ in µ s (λ x̄. let x̄0 = (n + m, x̄) in b•[ξ, x̄0]) ≈ let x =

(0, λi0. λx0. let s0, µ0 = Γ in (λγ0. a•[γ0, x0]) (i0 +

s0, µ0)) in let y = (0, λi. λy0. let s, µ =

∆ in (λδ0. c•[δ0, y0]) (i + s, µ)) in let x̄ =

(merge m y x) in b•[ξ, x̄]
de f
= (fuse{x : A⊥ 7→ a; x : An 7→

fuse{y : A⊥ 7→ c; y : Am 7→ let x̄ = merge x, y;b}})•
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We define merge m x y as concatenating the two arrays in this man-
ner: merge n (s, f ) (t, g)≡ (0, λi. if i ≤ n then f (s+i) else g (t+
i − n)) □

4. Cost-free abstractions
When writting complex programs, programmers want to define
building blocks in isolation, and combine them using cut, as
illustrated in the previous section. We prove in this section that 1.
cuts can always be eliminated and 2. when they are, the performance
of the program does not get worse. Together, these properties mean
that abstraction is free, in the sense that it does not cost anything to
structure a program as a composition of small building blocks.

4.1 Guaranteed fusion
Our cut-elimination algorithm is based on structural cut-elimination
in CLL [23], with a one-sided sequent presentation [32].

Theorem 5. Every instance of cut can be eliminated.

Proof. We define an admissible rule

Γ, x : An ⊢ a ∆, y : A⊥ ⊢ b
Γ,∆n ⊢ fuse{x : An 7→ a; y : A⊥ 7→ b}

Fusen

by structural induction on the intermediate type A and the programs
a and b. The definition does not introduce any use of cut. □

The general outline of the definition, as well as an argument for
its termination, follows. As a preliminary, we justify why fuse must
be generalized to an n-ary version. Consider fuse on an array type:

Γ, A⊥ ⊢ a
Γn,

˙
n A⊥ ⊢

˙ Ξ, An ⊢ b
Ξ,
⊗

n A ⊢
⊗

Γn,Ξ ⊢
Fuse

The result should be a series of n fuses on A. However, because
n is abstract, we cannot expand this series syntactically. Hence we
extend the syntax to n-ary fuses to obtain the following reduct,
which can be understood as running the program b and n copies of
the program a.

Γ, x : A⊥ ⊢ a Ξ, x̄ : An ⊢ b
Γn,Ξ ⊢ fuse{x : A⊥ 7→ a; x̄ : An 7→ b}

Fusen

We proceed by mutual induction on the programs being fused
and the intermediate type. When both programs start by eliminating
the type being fused we say that the fuse is ready. The definition of
fuse has then two main cases: ready or not.

Ready In the ready case, fusion reduces to fusion on the sub-
components (as shown above). The intermediate types to eliminate
are then strictly smaller than the original. Compared to standard
cut-elimination, the new cases that we introduce are when types are
either tensor/par arrays or sequences (on both sides of the cut),

• The tensor/par case has been discussed above, but there is a
complication if one of the programs uses a version of coslice
with multiple branches. In such a case, one obtains multiple
arrays, which must be merged back together. The binary case
looks like this:

Γ, A⊥ ⊢ a ∆, A⊥ ⊢ c
Γn,∆m,

˙
n+m A⊥ ⊢

˙ Ξ, An+m ⊢ b
Ξ,
⊗

n+m A ⊢
⊗

Γn,∆m,Ξ ⊢
Fuse

=⇒

Γ, A⊥ ⊢ a
∆, A⊥ ⊢ c

Ξ, An+m ⊢ b
Ξ, An, Am ⊢

Mergen

∆m,Ξ, An ⊢
Fusem

Γn,∆m,Ξ ⊢
Fusen

The merge construction is defined by structural induction on its
argument. Most rules do not interact with n-ary types, so merge
merely commutes with those.
The remaining rules are split, traverse and coslice. In the
split case, merge commutes with just one side of the split.
In turn, coslice and traverse use the merged array in exactly
one of the branches, which can be split into two, each of them
consuming one of the arguments of merge.

• In the sequence case, we have a traverse on both sides of the
cut. Then we combine both instances of traverse into a single
one which consumes all the sequences that where used by any
of the sides.

Γ, A⊥ ⊢ a
Γn+m, §n+m A⊥ ⊢

§ ∆, A ⊢ b Ξ, A ⊢ c
∆n,Ξm, §n+m A ⊢

§

Γn+m,∆n,Ξm ⊢
Fuse

=⇒

Γ, A⊥ ⊢ a ∆, A ⊢ b
∆,Γ ⊢

Fuse Γ, A⊥ ⊢ a Ξ, A ⊢ c
Ξ,Γ ⊢

Fuse

∆n,Ξm,Γn,Γm ⊢
§

Γn+m,∆n,Ξm ⊢
Splitn

Cut elimination (and, in particular, the merge rule) requires decid-
ing inequalities between sizes. If the relationship between the sizes
cannot be inferred statically, then a single dynamic test is introduced.

This additional dynamic check does not foil our goal of guaran-
teed improvement through fusion. First, cut-elimination avoids the
branching performed by the coslice or traverse for every array
element. Because arrays can have arbitrary size, this tests would
have costed more in general than any fixed number of dynamic tests
introduced by cut. Second, the introduction of dynamic checks can
be avoided altogether by introducing a suitable precondition (see
Sec. 2.3).

Not ready Ignoring for a moment that fuse can be n-ary, we then
have the following situation

Γ, x : A⊥ ⊢ a w : C,∆, y : A ⊢ b
Γ,w : C,∆ ⊢ fuse{x : A⊥ 7→ a; y : A 7→ b}

Fuse

where b begins by eliminating w : C. It can then be shown that the
eliminator of C can be commuted with fuse, for every type C. The
commuting step makes the subprogram smaller, which guarantees
that every fuse eventually becomes ready.

The n-ary case Fusen can be reduced to the unary one by
commuting the size introducing An. This side will always be non-
ready as long as n , 1, because no rule can eliminate a general
n-ary variable.

Non-eliminating rules such as a cut, sync or loop commute
with fuse. This means that allocation in a subprogram does not
compromise fusion at an outer level.

Finally, our language can be extended at will with primitive
atomic types and operations over them, as is done in our prototype
compiler. In such an extension, cuts on primitive types will not al-
ways be eliminated, but left in a ready state. Because these values
are immediately used, our goal of eliminating intermediate storage
of result values is still fulfilled. Furthermore, in a computational in-
terpretation of the calculus, the operands of the primitive operations
are small and fit easily in a fast-access processor register.

4.2 Guaranteed improvement
We can now show that the fusion process described in the previous
section does not increase the running time of the program.

Cost measure We measure the cost of a program as the number
of β-reductions required to reduce its semantics to a normal form.
Because of linearity, whether a call-by-name, call-by-value or call-
by-need strategy is used is of limited relevance.

8 2016/10/1



The n-ary types in contexts introduce sizes and indices, which
are non-linear. Indexing into a variable is considered a β-reduction
(cost 1), the same for multiplication. The marginal cost of additions
on index variables is assumed negligible. As for pattern matching,
we assume a cost of 1 for each application of if or case. Note that,
because of linearity, we can amortize the cost of β-reductions inside
λ-abstractions when computing the cost measure. On the other hand,
let statements are used for clarity and should be read as syntactic
substitutions with no run-time cost.

Branching Additionally, to be able to precisely count the number
of reductions we need to know which side of each branch will be
taken at run time. Therefore the measure depends on an environment
giving this value. We additionally assert that the environment is
consistent with whatever choices are made by the &-eliminators.
(In effect this environment is an oracle.) In sum, if Γ ⊢ a and γ is
a valid branch-predicting environment for Γ, then |a|[γ] is a natural
number.

Theorem 6. For any two programs a and b communicating via
type A:

|fuse{x : An 7→ a; y : A⊥ 7→ b}|[Γ,∆]

≤ |cut{x : An 7→ a; y : A⊥ 7→ b}|[Γ,∆]

Proof. By case analysis on each cut-elimination rule. % All the
cases are found in the appendix.

For example, going back to the rule for
⊗

n A:

n`⊗
|fuse{z :

¸
n+m

A⊥ 7→ coslice z{x 7→na; y 7→mc}; z̄ :
⊗
n+m

A 7→

let x̄ = slice z̄;b}|[Γ,∆, ξ] =

2 +
∑

n(1 + 3 ·#v(Γ) + χ+(A⊥) + |a|[Γ, x]) +
∑

m(1 + 3 ·

#v(∆)+ χ+(A⊥)+ |c|[∆, y]) + 2+ |b|[ξ, x̄] ≥
∑

n(χ+(A⊥)+

3 ·#v(Γ) + |a|[Γ, x]) +
∑

m(χ+(A⊥) + 3 ·#v(∆) +

|c|[∆, y]) + n + m + |b|[ξ, x̄] = |fuse{x : A⊥ 7→ a; x : An 7→

fuse{y : A⊥ 7→ c; y : Am 7→ let x̄ = merge x, y;b}}|[Γ,∆, ξ]
Here, #v(Γ) counts the number of variables in a context Γ. If A is
a positive type, then χ+(A) = 1, otherwise χ+(A) = 0. □

5. Examples and benchmarks
To see how CLLn scales to more complex examples, we implement
and benchmark kernels for computing FFT, 1-dimensional PDE for
wave propagation, and the convex hull of a finite set of points on
the plane.

5.1 Methodology
The generated code is compiled using GCC 6.2.1. The programs
are run and timed on a Fedora 24, 2×8GB 1333MHz RAM, Intel
i7 2630QM machine. Optimization level -O3 is used to control
for domain-agnostic transformations that state-of-the-art compilers
can already perform, so that the unfused code is not unfairly
disadvantaged. The running time (user space) is averaged over
between 10 and 100 repetitions; the value is chosen for each
benchmark to minimize variance. For each of the examples, two

versions of the C code are generated by alternatively enabling and
disabling cut elimination in the prototype compiler. Hand-optimized
C versions of the algorithms are provided for comparison and
measured using the same method.

5.2 FFT kernel
A ubiquitous algorithm in high performance computing is the Fast
Fourier Transform. There is a plethora of ways to implement FFT.
We choose here to implement the conventional Cooley-Tukey radix-
2 in-time decimation. At the core of this algorithm is the size-two
discrete Fourier transform:

bff ≡ (x0 ,x1 ) : C ⊗ C , (y0 ,y1 ) : C⊥ ⊗ C⊥ ⊢

y0 = x0 + x1wk
n

y1 = x0 − x1wk
n

The above function is sometimes called “butterfly”, in reference to
the shape of the dependency graph between inputs and outputs, both
pairs of complex numbers. The wk

n constants are known as twiddle
factors. As is conventional, our FFT consists of a loop which iterates
log n times where n is the number of elements in the input array. We
will describe a single iteration: their chaining offers no particular
insight to understand par or tensor arrays. We can program each
iteration as the chaining of a series of smaller steps, shown below.
Thanks to duality, zip and halve can be applied backwards by
exchanging the roles of argument and result.
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The above description decomposes the FFT algorithm into a pipeline
of simple functions which are easy to implement. This pattern
is typical of functional programming; and is the style which we
advocate.

We implement this program in our framework. After fusion we
obtain an efficient implementation which does not compute nor
allocate any intermediate arrays. The generated code consists on one
single loop which performs almost identically to the hand-optimized
version.

void fftStep (size_t n, double complex ∗a, double complex ∗b) {
double complex z = _Complex_I ∗ 2.0 ∗ M_PI / (double)(n);
for (size_t i = 0; i < n; i = i + 1) {

double complex x = a[i];
double complex y = cexp(((double)i) ∗ z) ∗ arg_aS[n + i];
b[i] = x + y;
b[n + i] = x − y;

}
}

5.3 Wave propagation stencil
A numerical solution for wave propagation can be described as a
stencil computation [13]. Both time and space are discretized. At
a time step t the displacement of the medium at each point can be
computed from the displacements of that point and its neighbors at
times t − 1 and t − 2.

If the stencil computation is simple enough to be performed
with a small number of processor registers, it is possible to improve
performance by fusing several steps together. This is possible in
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CLLn if the input and the output of each step have the same type.
As in Sec. 2.9, we use a sequence type to implement this stencil
operation. Because each step depends on the two previous ones, the
input (and, therefore, the output), must have type §n(R ⊗ R); and
the full computation type §n(R ⊗R) ⊸ §n(R ⊗R). The full stencil
computation is realized as a stream transformer arrow in the spirit
of Liu et al. [20]. Even if this involves higher-order combinators
(e.g. sequences of functions), all these intermediate abstractions are
fused away, leaving behind only elementary array operations.

We measure the time to compute 600 simulation steps with an
input vector of 6·106 elements (6·104 for the unfused version). The
time is averaged over 3 repetitions, and divided by the number of
computed wave displacements (both in time and space).

5.4 QuickHull for convex hull computation
Computing the convex hull of a finite set of points is a common
operation in computational geometry. The quickhull algorithm [3]
has an average complexity of O(n log n) for n points uniformly
distributed over the space. We demonstrate how the 2-dimensional
case can be implemented in CLLn.

As is shown by Lippmeier et al. [19], the heart of this algorithm
is a filterMax-like operation, which from a single array of points
produces both i) an array of points above a given line segment,
and, among these points, ii) the one furthest away from it. For
best performance, this operation should be made in with only one
pass over the array. At the same time, we would like to write both
operations i) and ii) independently.

For this to happen, we need to take an original array of points
(e.g. §n(R ⊗ R)), and obtain from it a pair of sequences (e.g.
§n(R ⊗ R)` §n(R ⊗ R)).
filterMaxLike ≡ Γ,∆, a : §n(R ⊗ R) ⊢
cut{b : §n(R⊥ ` R⊥) ⊗ §n(R⊥ ` R⊥) 7→

let c, d = b;
traverse{a as a0, c as c1, d as d1 7→n

sync{x : R⊥ ` R⊥ 7→ a0 ↔ x
y : R ⊗ R2 7→ let c0, d0 = split1 y;

mix{c0 ↔ c1; d0 ↔ d1}}}
b0 : §n(R ⊗ R)` §n(R ⊗ R) 7→

connect b0 to{c2 7→ filter[Γ, c2]; d2 7→ max[∆, d2]}}

The programs filter and max will each perform one traversal on
the array. However, once all cuts are eliminated, only one single
traverse over the input sequence will remain. Only a small tuple
R ⊗ R needs to be allocated at each step with sync2, instead of a
full array.

5.5 Summary of results
The running times for the examples are summarized in Fig. 7. By
applying cut elimination and a straightforward compilation scheme,
it is possible to run programs rich in abstraction in times and
resembling those of hand-optimized C code. These results show
how the guaranteed fusion enables compositional programming in
practical settings.

There is a discrepancy between Plain C and Fused for QuickHull.
The increase in cost in the CLLn version is due to the use of
intermediate values of type A ⊕ 1 when filtering and selecting
points. This modeling choice has no overhead inside the kernels
themselves, because fusion avoids the potential branching. But it
still increases the cost where the program uses intermediate storage;
namely when sending results between the different filterMax-like
kernels that make the full QuickHull algorithm, or when introducing
an accumulator with a loop construct.

In the case of wave propagation, the CLLn version of the code
performs better because it accesses each element of the input array

Algorithm Unfused Fused Plain C Library
FFT kernel 127 ns 92 ns 92 ns 2.5 ns
Wave propagation 223 ns 2.5 ns 2.7 ns 1.8 ns
QuickHull 612 ns 58 ns 35 ns 210 ns

Figure 7: Benchmark summary. Code generated before and after
applying fusion is compared to our own hand-optimized C program,
and a state-of-the-art implementation (FFTW, QHull, Physis). Time
is average CPU time divided by the number of input elements
(QuickHull), or computed elements (wave propagation, FFT).

exactly once, while the Plain C version reads them once for each
application of the stencil in which they intervene.

Finally, note that the state-of-the-art implementations may be
heavily optimized down to the assembly instruction levels (e.g.
FFTW) or more general in purpose (QHull), so comparisons
must be drawn with care. The code measured is available at
https://lopezjuan.com/limestone, revision v0.0.1-2.

6. Discussion
Size arithmetic Restricting size expressions to linear integer arith-
metic might prove restrictive if one wants to iterate over an array in
two dimensions, or use a fully general synckn rule.

In the compiler implementation, we extend the grammar for size
expressions as follows:

n,m ::= · · · | n · m
The product of two size expressions is always normalized by using
the ring axioms (distributivity etc.). This yields a linear combination
of monomials, each of which is treated as an independent variable.
Furthermore, when applying a rule that changes the size of the
context, such as

˙
, the resulting sizes for each variable can

be inferred by multivariate polynomial division (the remainder
must be 0). This approach suffices for most practical examples
involving unbounded array dimensions. If desired, congruence
can be recovered by adding a primitive rule inhabiting the type
∀α : N.∀β : N.∀γ : N.∀p : α ≤ β.∃q : αγ ≤ βγ.1.

Other applications of LIA solvers to functional programming,
such as Rondon et al. [27], treat multiplication as an uninterpreted
function, preserving congruence at the expense of distributivity.

Code reuse and polymorphism Code reuse is achieved by giving
names to derivations, which are substituted at the points where the
their names are invoked. Cut elimination is then applied to merge
the caller and callee derivations together.

For conciseness, this paper presents a version of LL without sec-
ond order quantification. By contrast, the prototype does support a
form of static polymorphism by generalizing the ∀ and ∃ connec-
tives to range over type variables. Any cut introducing requiring
that any cut introducing them is eliminated before type-checking
and code-generation. This way we generalize many of the patterns
in the examples can be generalized into reusable combinators.

Exponentials and sync Most versions of linear logic feature
exponentials: the type !A corresponds to n copies of A, where n can
be chosen arbitrarily by the program. As we saw in Sec. 2.6, some
common applications of exponentials can be realized in CLLn by
combining existing constructs, albeit in a sometimes verbose way.

For our calculus, adding exponentials would mean forego-
ing either guaranteed fusion (Thm. 5) or guaranteed improve-
ment (Thm. 6). To remain consistent, logical systems keep cut-
elimination, so they give up guaranteed improvement.

In our case, the best choice appears to be the opposite. That
is, fusion should remain cost-free, but the programmer may opt-
out from fusion by means of annotating a type with exponentials.
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Exponentials are then interpreted computationally as a thunk in a
lazy language; they are evaluated at most once; may be used many
times by means of storing the value.

Front-end The examples programs are written by combining
several basic functions (map, dot,filter,. . .) which are in turn
generated as internal representations of CLLn trees by a set of
combinators.

There are several ways in which CLLn can be turned into a fully-
fledged platform. One possibility is to write a stand-alone language
on top. On the other hand, given the precise control of evaluation
and ordering, CLLn is well positioned to become an additional layer
of syntax on top of an imperative language, such as C or Fortran.
In this setting, CLLn would provide a more principled, safer way
of describing and fusing array operations, while the fine-grained
computation is implemented in the imperative language.

6.1 Related Work
Fusion as Cut-Elimination Framing fusion as cut-elimination in
a sequent calculus was first proposed by Marlow [21]. Marlow
identified the important role of commuting conversions, which
allow to evaluate any cut, even if the composed programs do not
immediately deal with the variable introduced by the cut. Marlow
also notes that, by expressing fusion as cut-elimination, he obtains
an algorithm simpler than Wadler [31] did in his seminal paper.
By basing our work on a linear sequent calculus, we get additional
benefits, such as the improvement guarantee.

Non-commutative linear logic and state The notion of a non-
commutative multiplicative binary linear operator (▷) was explored
in depth by Retoré [26], and Reddy [25] uses it together with a
dagger modality (†) to model state.

Our system uses an n-ary version § of these non-commutative
connectives. By making non-commutativity a property only of
the connective, and not also of the context, we ensure that non-
commutativity does not interfere with the fusion properties of the
calculus, and, in particular, does not require the use of concurrent
processes for its implementation.

Bounded Linear Logic and Implicit Complexity The idea of
controlling time complexity by using linear types originates with
the seminal paper of Girard et al. [12], describing Bounded Linear
Logic (BLL). Together with the work of Leivant [16] and Bellantoni
and Cook [5], BLL has seeded a sub-field of computer science and
logic dedicated to place structural complexity bounds on programs:
implicit computational complexity [8].

The present paper describes an even more stringent version of
LL, enforcing that each variable is used exactly once. The non-array
fragment of our system is called Rudimentary Linear Logic (RLL)
by Girard et al. [12], and dismissed with the following words: “a
fantastic medicine with respect to problems of complexity, except
that the patient is dead! Without contraction the expressive power
of logic is so weak that one can hardly program more than programs
permuting the components of a pair.” In effect, we need to provide
suitable array primitives (Sec. 2.3), so that we can recover some
programming power and write useful programs.

Another difference with the field of implicit complexity is in the
goals we pursue. While Girard et al. [12] care about bounding the
absolute complexity of programs, what matters for us is that any
single cut can be eliminated without worsening the run time. For us,
it does not matter if exponentials are used locally within a function
f . As long as they do not show up in the type of f , fusion of f with
anything else is guaranteed to improve performance.

Functional Array Programming In this paper we have used the
terms par and tensor to refer to the two dual forms of fusible arrays.
The functional high performance parallel array community uses the

terms push and pull arrays with a similar meaning. First, pull arrays,
also known as delayed arrays [18], define operations on arrays as
functions from index to element. This kind of array representation
can be traced at least as far back as Abrams [1]. Using Haskell
syntax we can define them as follows:

type Pull a = Int → a
Fusion will happen if the compiler inlines the function stored in the
push array. More recently, Claessen et al. [7] have proposed push
arrays as a complement to pull arrays.

type Push a = (Int → a → P) → P
In the above, the type P represents programs which can write to
memory, loop, and spawn parallel computations. The value of a
push array can be recovered as a program which writes the contents
of the array to memory. In the type shown above, that program
is parameterized by the function (Int → a → P) which can be
understood as the computation which actually performs the writing
to memory, given an index and a value to write to memory. Fusion
is also supported by push arrays and they have an efficient parallel
implementation.

The functional representation of push and pull arrays is similar to
par and tensor arrays. Both representations support fusion, and show
a duality between the two array types. In both representations, some
functions are efficiently implementable using pull/tensor arrays
but not push/par arrays and vice versa. In fact, the functional
representation corresponds to the continuation-based translation of
linear types [15], if one chooses P as the type of effects.

Yet, the functional representation suffers from infelicities.
In the case of pull arrays, if an element is accessed several times

then it will be recomputed each time . Push arrays suffer from a
similar problem: unless a pull array calls the program it receives
exactly once for each index, some elements will be undefined or, in
a parallel setting, subject to race conditions.

Both problems stem from a lack of linearity. This is the reason
why, in this paper, we have chosen to use linear logic as a starting
point for the type system. A consequence of this choice is that
operations such as pull array concatenation, while inefficient in the
functional representation, behave well in our framework (Sec. 2.9).
We believe that the choice of a classical, linear framework reveals
the essential duality of push and pull arrays.

Repa The library Repa [18] also makes use of pull arrays, as func-
tions from index to element. When faced with the shortcomings
of pull arrays they developed a more elaborate version, tailored to
efficiently compute stencil computations [17]. Their new represen-
tation, although still similar to pull arrays, solves some of their prob-
lems, such as the inefficient concatenation. Yet, their representation
does not exhibit any duality, and requires many basic combinators
to be defined as primitive notions by the library. Finally, the lack of
linearity may still cause the duplication of computation.

Data-flow Fusion Lippmeier et al. [19] implements branching
data-flow fusion for Haskell by internally tagging each sequence
with a rate, and applying fusion only when the rates match. This
allows the programmer to use the usual idioms for filtering, zipping,
mapping, and unzipping lists while removing redundant intermedi-
ate arrays and loop counters.

However, the information on whether fusion can be performed is
hidden from the programmer. In our language, we instead rely on the
core linearity properties of the system, and encode the composability
of the data-flow in the same framework.

Ling Pouillard [24] is developing Ling, a programming language
based on linear logic sporting a rich user-facing syntax. It imple-
ments many the constructs of CLLn. It has a distinction between
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data types and session types, which incorporates and expands on
the distinction between size variables and linear variables.

Ling also sports a form of fusion. The transformation does
not operate on the program terms themselves, but instead, the
program is instantiated with concrete, constant sizes before being
converted to a sequence of statements and loops. Then, fusion of
these statements can be attempted. Cost and fusion guarantees, as
well as the interaction with dynamic sizes, are still unexplored in
Ling.

Generalized optimizations The fusion technique presented in this
paper, and the related work mentioned so far, hails from the work
on shortcut fusion [10]. The central idea is to pick a particular
representation for the type which should be eliminated, in our case
arrays, so that it becomes amenable to fusion. However, there are
many techniques which can achieve the effect of fusion, including
supercompilation [30], deforestation [31] and fixed point promotion
[22]. These methods have the advantage that they can remove
intermediate structures even when the programmer has not been
careful to use a fusion-enabled type. Their downside is that they can
be unreliable; it is hard to predict when fusion will fail. Furthermore,
they typically rely on rewriting whole functions, whereas shortcut
fusion and its descendants relies on local rewrite rules which can
be easily incorporated into an optimizing compiler.

Session types Wadler [32] shows that CLL corresponds to a pro-
cess calculus free from deadlock. We propose a different correspon-
dence from CLL derivations into programs. Freedom from deadlock
in the process calculus corresponds to termination in the λ-calculus.

6.2 Conclusion
We have shown that classical linear types are a suitable framework
for describing composable programs with predictable fusion prop-
erties. The resulting calculus can form the basis for a functional lan-
guage for predictable high-performance computations. Indeed, our
examples show how it is possible to write code in a functional style
(immutable data, function composition) while having the certainty
that these abstractions will not translate into reduced performance.

Programming in a functional language appears restrictive: the
absence of side effects is a straitjacket which constrains creativity.
Yet, to the initiated, using a functional language is a liberating
experience: one may combine functions at will, without any risk of
side effects getting in the way. We feel the same about programming
in a linear language: at first, linearity appears daunting, severely
constraining the kind of programs one can write; but in time, one
enjoys the cost-free abstractions granted by guaranteed fusion.
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