Conversion
and

reduction in
dependently-

typed
calculi

Conversion and reduction in
dependently-typed calculi
A Survey

Victor Lépez Juan
Programming Logic Group

2016-03-09

Motivation

Conversion
and
reduction in
dependently-
typed
calculi

Victor Lopez

Juan m Agda behaves slowly on not-so-hard problems.

m This is a big obstacle, for some users more so
than the lack of tactics or the intransigence of
the type-checker.

m It is hard to find documentation on state-of-the
art implementations (e.g. Coq, Agda).

Outline

Conversion
and

duction i .

dependently- Matita
typed = Call-by-need
calculi .

Victor Lépez | 6-expa nsion

Juan - Coq

AProlog
m The suspension calculus

Tog
m Stats

Going forward
m Action plan
m Stable names

Matita

Conversion
and
reduction in
dependently-
typed

calcull Claudio Sacerdoti Coen. “Reduction and conversion
B strategies for the calculus of (co) inductive
constructions: Part 1”. . In: Electronic Notes in
Theoretical Computer Science 174.10 (2007),

pp. 97-118

m CoC based
m Compatible with Coq proof terms.
m Focus on user interaction and type inference.

Matita

Conversion
and
reduction in

dependently-

typed
calculi

Victor Lopez
Juan

Matita

Calculus of (Co)Inductive Constructions

t

A subset of Matita's implementation:

?TAN.Q:

Set | Prop | Type,
tt

At

A=ttt

[]:tt

{t)nt{t}

e t/n,)

v {t:t}

de Bruijn index, n € [1,4+00)
constant

(co)inductive type
(co)inductive constructor
sorts

application

abstraction

local definition

M-type

case analysis

mutual recursion

mutual co-recursion

Matita performance

Conversion
and
reduction in
dependently-

L Conversion heuristics: None, a-equivalence, and
e both a-equivalence and lazy 6-expansion.
e Reduction strategies: Call-by-name, by-value,

Matita hybrid (not shown) and by-need.
Conversion Red. Total Longest >30s >1s
Simple by-name 1285.71s 29.6s 375 170
w/ a-equiv by-name 246.76 6.9 1 15
w/ a-eq & lazy 6 by-name 199.26s 2.2s 1 2
w/ a-eq & lazy 6 by-need 201.71s 1.5s 1 3
w/ a-eq & lazy 6 by-value 220.54s 11.8s 0 19
Coqg 40.87s 2.5s 0 2

Call-by-need evaluation

Conversion
and
reduction in
d dently- . - .
AWl Based on generalized Krivine machine:

calculi

\/uiL]ﬁanopez State = (Environment, Term, Stack)
- Environment = [MVar (Bool, Configuration)]
Stack = [(Environment, Term)]

m Application puts argument into Stack.
m A-abstraction moves argument from Stack to
Environment.

Other evaluation strategies use different
environment and stack types.

Smart &-expansion

Conversion
and
reduction in
dependently- . .
typed When checking for conversion of two terms...

vfalcfl: Reduce w/o &6-expansion
- Reduction stops — Terms are either WHNF, or

have 6-redex on head *.

Compute height? of heads (0 if WHNF, + if not

O-redex).

A Reduce term with tallest head until height
matches, compare for a-equiv.

!Head is the head of i) the function in an application, or ii) the
inductive argument in case analysis/well-founded recursion.
2Distance from root on implicit dependency tree.

Conversion
and
reduction in
dependently-
typed

caleull Could not find a technical report about the current

Victor Lopez

Juan implementation.

m Kernel syntax with general let, application, and
abstraction.

m Bytecode/native tactic used for intensive
computation.

m Smart 6-expansion based on priorities (« for
irrelevant terms).

AProlog

SRS Xiaochu Qi. “An implementation of the language

and

e lambda prolog organized around higher-order
dependently-

e pattern unification”. In: arXiv preprint
arXiv:0911.5203 (2009)

Victor Lopez
Juan

copy a a.

copy (app ti tz) (app ts ts) :- copy (t1 ts), copy (tzta)

copy (abs ti1) (abs tz) :- V¢ copy (t1 c) (tz c)

AProlog

m Emphasis in backtracking, existential
instantiation, disjunction.

m Efficient implementation based on a Prolog
abstract machine, with separate
pattern-fragment solver for higher-order
unification.

m Explicit substitutions to delay traversals.

The suspension calculus (1)

Conversion
WM Andrew Gacek and Gopalan Nadathur. “A simplified

dependently-

typed suspension calculus and its relationship to other
7°§'°”\" jl explicit substitution calculi”. In: arXiv preprint
RN Cs/0702152 (2007)

(Bs) ((AMtq)ta) = [t1,0, (t2,0) = nal].

(rl) [e,nl,e] — ¢, for ¢ a constant.

(r2) [#i,nl,nil] — #j, where j =i+ nl.
(r3) [#1,nl,(t,1) :: e] — [t,nl — 1, nil]

(r4) [[#Lnl? (t7 l) :: e]] — [[#i’,nl,e]],
where > =i—1, fori > 1.

(r5) [(tyty),nl,e] — ([ty,nl, e][ts,ol,nl,e]).
(r6) [(At),nl,e] — (A[t,1 4+ nl, (#1,1+nl) :: e])

The suspension calculus (ll)

Conversion
and
reduction in

depfynpdeedhtly- (ml) [[[[tv nllvel]]7nl2762]] - [[tvnr?{el?nlla€2}]]r
calcull where nl’ = nly, + (nly = len(ey)).
Victor Lopez
| m2) {e,,nly,nil} — e;.

i (m2)
(M3) {nil,0,e5} — e,.
(m4)
(m5)

m4) {nil,1 +nly, (t,1) = e} — {nil,nly, ey}
{(t,n) = ey, 1+ nly(s,0) i e5} —

{(tvn> H el7nl1a62}'

for nl; > n.

(m6) {(t,n) ::eq,n,(s,1) e} —

([[tvl’ (Svl) H 62]]7m> H {elvnv (Sal) H 62}'
where m =1+ (n = (len(ey) + 1)).

m5

Conversion
and
reduction in
dependently-
typed
calculi

Victor Lopez

Juan m Developed by Francesco Mazzoli
m Parametrized by several reduction strategies.
m Unification as in Agda, modulo issue 1258.

m Uses constraints for type-checking.

Time to show some stats

Conversion
and
reduction in
dependently-
typed
calculi

Victor Lopez
Juan

Benchmark different approaches on Tog
prototype.

Implement promising ones on Agda.
Profit

Action plan

DG I EMEINES

SUCECU Simon Peyton Jones, Simon Marlow, and Conal Elliott.

and

geduction in “Stretching the storage manager: weak pointers and
typed stable names in Haskell”. In: In Koopman and Clack

B [23. Springer Verlag, 1999, pp. 37-58

Victor Lopez
Juan

GC-aware pointer (equality)!
Pros:
m 100% safe, 100% leak free.
m Low overhead.
m Same framework implements value-weak hash
tables.
Cons:

m Hard to exploit in current implementation.
m Evaluating a term changes its stable name.

Dimensions

Conversion

and
reduction in
dependently-

e Fingerprinting © / Stable names / Hash consing /
Crypto-hash

Unification Lazy/Eager constraint generation.
b-expansion Eager / Lazy

Memoization @ / Subst. / Conversion / Reduction / All
Explicit substitution No / Yes

Victor Lépez
Juan

Intentionally left out

Hashing, Ao-calculus, MVar-based sharing, Byte-code
interpreter

Any thoughts?

	Matita
	Call-by-need
	δ-expansion
	Coq

	λProlog
	The suspension calculus

	Tog
	Stats

	Going forward
	Action plan
	Stable names

