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Motivation

Agda behaves slowly on not-so-hard problems.
This is a big obstacle, for some users more so
than the lack of tactics or the intransigence of
the type-checker.
It is hard to find documentation on state-of-the
art implementations (e.g. Coq, Agda).
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Matita

Claudio Sacerdoti Coen. “Reduction and conversion
strategies for the calculus of (co) inductive
constructions: Part I”. . In: Electronic Notes in
Theoretical Computer Science 174.10 (2007),
pp. 97–118

CoC based
Compatible with Coq proof terms.
Focus on user interaction and type inference.
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Calculus of (Co)Inductive Constructions

A subset of Matita's implementation:

t ∶∶= 𝑛 de Bruijn index, 𝑛 ∈ [1, +∞)
| 𝑐 constant
| 𝑖 (co)inductive type
| 𝑘 (co)inductive constructor
| 𝑆𝑒𝑡 | 𝑃𝑟𝑜𝑝 | 𝑇 𝑦𝑝𝑒𝑖 sorts
| 𝑡 𝑡 application
| 𝜆 ∶ 𝑡.𝑡 abstraction
| 𝜆 ∶= 𝑡.𝑡 local definition
| ∏ ∶ 𝑡.𝑡 ∏-type
| ⟨𝑡⟩ℎ𝑡{ ⃗𝑡} case analysis
| 𝜇𝑙{ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑡 ∶ 𝑡/𝑛𝛼} mutual recursion
| 𝜈𝑙{⃗⃗⃗⃗ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑡 ∶ 𝑡} mutual co-recursion
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Matita performance

Conversion heuristics: None, α-equivalence, and
both α-equivalence and lazy δ-expansion.
Reduction strategies: Call-by-name, by-value,
hybrid (not shown) and by-need.

Conversion Red. Total Longest > 30 s > 1 s
Simple by-name 1285.71s 29.6s 375 170
w/ α-equiv by-name 246.76 6.9 1 15
w/ α-eq & lazy δ by-name 199.26s 2.2s 1 2
w/ α-eq & lazy δ by-need 201.71s 1.5s 1 3
w/ α-eq & lazy δ by-value 220.54s 11.8s 0 19
Coq 40.87s 2.5s 0 2
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Call-by-need evaluation

Based on generalized Krivine machine:
State ≡ (Environment, Term, Stack)

Environment ≡ [MVar (Bool, Configuration)]
Stack ≡ [(Environment, Term)]

Application puts argument into Stack.
λ-abstraction moves argument from Stack to
Environment.

Other evaluation strategies use different
environment and stack types.
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Smart δ-expansion

When checking for conversion of two terms...
1 Reduce w/o δ-expansion
2 Reduction stops → Terms are either WHNF, or
have δ-redex on head 1.

3 Compute height2 of heads (0 if WHNF, +∞ if not
δ-redex).

4 Reduce term with tallest head until height
matches, compare for α-equiv.

1Head is the head of i) the function in an application, or ii) the
inductive argument in case analysis/well-founded recursion.

2Distance from root on implicit dependency tree.



Conversion
and

reduction in
dependently-

typed
calculi

Víctor López
Juan

Matita
Call-by-need
δ-expansion
Coq

λProlog
The suspension
calculus

Tog
Stats

Going
forward
Action plan
Stable names

Coq

Could not find a technical report about the current
implementation.

Kernel syntax with general let, application, and
abstraction.
Bytecode/native tactic used for intensive
computation.
Smart δ-expansion based on priorities (∞ for
irrelevant terms).
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λProlog

Xiaochu Qi. “An implementation of the language
lambda prolog organized around higher-order
pattern unification”. In: arXiv preprint
arXiv:0911.5203 (2009)

copy a a.
copy (app t₁ t₂) (app t₃ t₄) :- copy (t₁ t₃), copy (t₂ t₄)
copy (abs t₁) (abs t₂) :- ∀c copy (t₁ c) (t₂ c)

Emphasis in backtracking, existential
instantiation, disjunction.
Efficient implementation based on a Prolog
abstract machine, with separate
pattern-fragment solver for higher-order
unification.
Explicit substitutions to delay traversals.
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The suspension calculus (I)

Andrew Gacek and Gopalan Nadathur. “A simplified
suspension calculus and its relationship to other
explicit substitution calculi”. In: arXiv preprint
cs/0702152 (2007)

(β𝑠) ((𝜆𝑡1)𝑡2) → ⟦𝑡1, 0, (𝑡2, 0) ∶∶ 𝑛𝑖𝑙⟧.
(r1) ⟦𝑐, 𝑛𝑙, 𝑒⟧ → 𝑐, for 𝑐 a constant.
(r2) ⟦#𝑖, 𝑛𝑙, 𝑛𝑖𝑙⟧ → #𝑗, where 𝑗 = 𝑖 + 𝑛𝑙.
(r3) ⟦#1, 𝑛𝑙, (𝑡, 𝑙) ∶∶ 𝑒⟧ → ⟦𝑡, 𝑛𝑙 − 𝑙, 𝑛𝑖𝑙⟧
(r4) ⟦#𝑖, 𝑛𝑙, (𝑡, 𝑙) ∶∶ 𝑒⟧ → ⟦#𝑖’, 𝑛𝑙, 𝑒⟧,

where 𝑖’ = 𝑖 − 1, for 𝑖 > 1.
(r5) ⟦(𝑡1𝑡2), 𝑛𝑙, 𝑒⟧ → (⟦𝑡1, 𝑛𝑙, 𝑒⟧⟦𝑡2, 𝑜𝑙, 𝑛𝑙, 𝑒⟧).
(r6) ⟦(𝜆𝑡), 𝑛𝑙, 𝑒⟧ → (𝜆⟦𝑡, 1 + 𝑛𝑙, (#1, 1 + 𝑛𝑙) ∶∶ 𝑒⟧)
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The suspension calculus (II)

(m1) ⟦⟦𝑡, 𝑛𝑙1, 𝑒1⟧, 𝑛𝑙2, 𝑒2⟧ → ⟦𝑡, 𝑛𝑙’, {𝑒1, 𝑛𝑙1, 𝑒2}⟧,
where 𝑛𝑙’ = 𝑛𝑙2 + (𝑛𝑙1 ∸ 𝑙𝑒𝑛(𝑒2)).

(m2) {𝑒1, 𝑛𝑙1, 𝑛𝑖𝑙} → 𝑒1.
(m3) {𝑛𝑖𝑙, 0, 𝑒2} → 𝑒2.
(m4) {𝑛𝑖𝑙, 1 + 𝑛𝑙1, (𝑡, 𝑙) ∶∶ 𝑒2} → {𝑛𝑖𝑙, 𝑛𝑙1, 𝑒2}
(m5) {(𝑡, 𝑛) ∶∶ 𝑒1, 1 + 𝑛𝑙1(𝑠, 𝑙) ∶∶ 𝑒2} →

{(𝑡, 𝑛) ∶∶ 𝑒1, 𝑛𝑙1, 𝑒2},
for 𝑛𝑙1 > 𝑛.

(m6) {(𝑡, 𝑛) ∶∶ 𝑒1, 𝑛, (𝑠, 𝑙) ∶∶ 𝑒2} →
(⟦𝑡, 𝑙, (𝑠, 𝑙) ∶∶ 𝑒2⟧, 𝑚) ∶∶ {𝑒1, 𝑛, (𝑠, 𝑙) ∶∶ 𝑒2},
where 𝑚 = 𝑙 + (𝑛 ∸ (𝑙𝑒𝑛(𝑒2) + 1)).
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Tog

Developed by Francesco Mazzoli
Parametrized by several reduction strategies.
Unification as in Agda, modulo issue 1258.
Uses constraints for type-checking.

Time to show some stats
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Plan

1 Benchmark different approaches on Tog
prototype.

2 Implement promising ones on Agda.
3 Profit
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Stable names

Simon Peyton Jones, Simon Marlow, and Conal Elliott.
“Stretching the storage manager: weak pointers and
stable names in Haskell”. In: In Koopman and Clack
[23. Springer Verlag, 1999, pp. 37–58

GC-aware pointer (equality)!
Pros:

100% safe, 100% leak free.
Low overhead.
Same framework implements value-weak hash
tables.

Cons:
Hard to exploit in current implementation.
Evaluating a term changes its stable name.
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Dimensions

Go

Fingerprinting ∅ / Stable names / Hash consing /
Crypto-hash

Unification Lazy/Eager constraint generation.
δ-expansion Eager / Lazy
Memoization ∅ / Subst. / Conversion / Reduction / All
Explicit substitution No / Yes

Intentionally left out
Hashing, λσ-calculus, MVar-based sharing, Byte-code
interpreter

Any thoughts?
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