
Conversion
and

reduction in
dependently-

typed
calculi

Víctor López
Juan

Matita
Call-by-need
δ-expansion
Coq

λProlog
The suspension
calculus

Tog
Stats

Going
forward
Action plan
Stable names

Conversion and reduction in
dependently-typed calculi

A Survey

Víctor López Juan

Programming Logic Group

2016-03-09

Conversion
and

reduction in
dependently-

typed
calculi

Víctor López
Juan

Matita
Call-by-need
δ-expansion
Coq

λProlog
The suspension
calculus

Tog
Stats

Going
forward
Action plan
Stable names

Motivation

Agda behaves slowly on not-so-hard problems.
This is a big obstacle, for some users more so
than the lack of tactics or the intransigence of
the type-checker.
It is hard to find documentation on state-of-the
art implementations (e.g. Coq, Agda).

Conversion
and

reduction in
dependently-

typed
calculi

Víctor López
Juan

Matita
Call-by-need
δ-expansion
Coq

λProlog
The suspension
calculus

Tog
Stats

Going
forward
Action plan
Stable names

Outline

1 Matita
Call-by-need
δ-expansion
Coq

2 λProlog
The suspension calculus

3 Tog
Stats

4 Going forward
Action plan
Stable names

Conversion
and

reduction in
dependently-

typed
calculi

Víctor López
Juan

Matita
Call-by-need
δ-expansion
Coq

λProlog
The suspension
calculus

Tog
Stats

Going
forward
Action plan
Stable names

Matita

Claudio Sacerdoti Coen. “Reduction and conversion
strategies for the calculus of (co) inductive
constructions: Part I”. . In: Electronic Notes in
Theoretical Computer Science 174.10 (2007),
pp. 97–118

CoC based
Compatible with Coq proof terms.
Focus on user interaction and type inference.

Conversion
and

reduction in
dependently-

typed
calculi

Víctor López
Juan

Matita
Call-by-need
δ-expansion
Coq

λProlog
The suspension
calculus

Tog
Stats

Going
forward
Action plan
Stable names

Calculus of (Co)Inductive Constructions

A subset of Matita's implementation:

t ∶∶= 𝑛 de Bruijn index, 𝑛 ∈ [1, +∞)
| 𝑐 constant
| 𝑖 (co)inductive type
| 𝑘 (co)inductive constructor
| 𝑆𝑒𝑡 | 𝑃𝑟𝑜𝑝 | 𝑇 𝑦𝑝𝑒𝑖 sorts
| 𝑡 𝑡 application
| 𝜆 ∶ 𝑡.𝑡 abstraction
| 𝜆 ∶= 𝑡.𝑡 local definition
| ∏ ∶ 𝑡.𝑡 ∏-type
| ⟨𝑡⟩ℎ𝑡{ ⃗𝑡} case analysis
| 𝜇𝑙{ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑡 ∶ 𝑡/𝑛𝛼} mutual recursion
| 𝜈𝑙{⃗⃗⃗⃗ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑡 ∶ 𝑡} mutual co-recursion

Conversion
and

reduction in
dependently-

typed
calculi

Víctor López
Juan

Matita
Call-by-need
δ-expansion
Coq

λProlog
The suspension
calculus

Tog
Stats

Going
forward
Action plan
Stable names

Matita performance

Conversion heuristics: None, α-equivalence, and
both α-equivalence and lazy δ-expansion.
Reduction strategies: Call-by-name, by-value,
hybrid (not shown) and by-need.

Conversion Red. Total Longest > 30 s > 1 s
Simple by-name 1285.71s 29.6s 375 170
w/ α-equiv by-name 246.76 6.9 1 15
w/ α-eq & lazy δ by-name 199.26s 2.2s 1 2
w/ α-eq & lazy δ by-need 201.71s 1.5s 1 3
w/ α-eq & lazy δ by-value 220.54s 11.8s 0 19
Coq 40.87s 2.5s 0 2

Conversion
and

reduction in
dependently-

typed
calculi

Víctor López
Juan

Matita
Call-by-need
δ-expansion
Coq

λProlog
The suspension
calculus

Tog
Stats

Going
forward
Action plan
Stable names

Call-by-need evaluation

Based on generalized Krivine machine:
State ≡ (Environment, Term, Stack)

Environment ≡ [MVar (Bool, Configuration)]
Stack ≡ [(Environment, Term)]

Application puts argument into Stack.
λ-abstraction moves argument from Stack to
Environment.

Other evaluation strategies use different
environment and stack types.

Conversion
and

reduction in
dependently-

typed
calculi

Víctor López
Juan

Matita
Call-by-need
δ-expansion
Coq

λProlog
The suspension
calculus

Tog
Stats

Going
forward
Action plan
Stable names

Smart δ-expansion

When checking for conversion of two terms...
1 Reduce w/o δ-expansion
2 Reduction stops → Terms are either WHNF, or
have δ-redex on head 1.

3 Compute height2 of heads (0 if WHNF, +∞ if not
δ-redex).

4 Reduce term with tallest head until height
matches, compare for α-equiv.

1Head is the head of i) the function in an application, or ii) the
inductive argument in case analysis/well-founded recursion.

2Distance from root on implicit dependency tree.

Conversion
and

reduction in
dependently-

typed
calculi

Víctor López
Juan

Matita
Call-by-need
δ-expansion
Coq

λProlog
The suspension
calculus

Tog
Stats

Going
forward
Action plan
Stable names

Coq

Could not find a technical report about the current
implementation.

Kernel syntax with general let, application, and
abstraction.
Bytecode/native tactic used for intensive
computation.
Smart δ-expansion based on priorities (∞ for
irrelevant terms).

Conversion
and

reduction in
dependently-

typed
calculi

Víctor López
Juan

Matita
Call-by-need
δ-expansion
Coq

λProlog
The suspension
calculus

Tog
Stats

Going
forward
Action plan
Stable names

λProlog

Xiaochu Qi. “An implementation of the language
lambda prolog organized around higher-order
pattern unification”. In: arXiv preprint
arXiv:0911.5203 (2009)

copy a a.
copy (app t₁ t₂) (app t₃ t₄) :- copy (t₁ t₃), copy (t₂ t₄)
copy (abs t₁) (abs t₂) :- ∀c copy (t₁ c) (t₂ c)

Emphasis in backtracking, existential
instantiation, disjunction.
Efficient implementation based on a Prolog
abstract machine, with separate
pattern-fragment solver for higher-order
unification.
Explicit substitutions to delay traversals.

Conversion
and

reduction in
dependently-

typed
calculi

Víctor López
Juan

Matita
Call-by-need
δ-expansion
Coq

λProlog
The suspension
calculus

Tog
Stats

Going
forward
Action plan
Stable names

The suspension calculus (I)

Andrew Gacek and Gopalan Nadathur. “A simplified
suspension calculus and its relationship to other
explicit substitution calculi”. In: arXiv preprint
cs/0702152 (2007)

(β𝑠) ((𝜆𝑡1)𝑡2) → ⟦𝑡1, 0, (𝑡2, 0) ∶∶ 𝑛𝑖𝑙⟧.
(r1) ⟦𝑐, 𝑛𝑙, 𝑒⟧ → 𝑐, for 𝑐 a constant.
(r2) ⟦#𝑖, 𝑛𝑙, 𝑛𝑖𝑙⟧ → #𝑗, where 𝑗 = 𝑖 + 𝑛𝑙.
(r3) ⟦#1, 𝑛𝑙, (𝑡, 𝑙) ∶∶ 𝑒⟧ → ⟦𝑡, 𝑛𝑙 − 𝑙, 𝑛𝑖𝑙⟧
(r4) ⟦#𝑖, 𝑛𝑙, (𝑡, 𝑙) ∶∶ 𝑒⟧ → ⟦#𝑖’, 𝑛𝑙, 𝑒⟧,

where 𝑖’ = 𝑖 − 1, for 𝑖 > 1.
(r5) ⟦(𝑡1𝑡2), 𝑛𝑙, 𝑒⟧ → (⟦𝑡1, 𝑛𝑙, 𝑒⟧⟦𝑡2, 𝑜𝑙, 𝑛𝑙, 𝑒⟧).
(r6) ⟦(𝜆𝑡), 𝑛𝑙, 𝑒⟧ → (𝜆⟦𝑡, 1 + 𝑛𝑙, (#1, 1 + 𝑛𝑙) ∶∶ 𝑒⟧)

Conversion
and

reduction in
dependently-

typed
calculi

Víctor López
Juan

Matita
Call-by-need
δ-expansion
Coq

λProlog
The suspension
calculus

Tog
Stats

Going
forward
Action plan
Stable names

The suspension calculus (II)

(m1) ⟦⟦𝑡, 𝑛𝑙1, 𝑒1⟧, 𝑛𝑙2, 𝑒2⟧ → ⟦𝑡, 𝑛𝑙’, {𝑒1, 𝑛𝑙1, 𝑒2}⟧,
where 𝑛𝑙’ = 𝑛𝑙2 + (𝑛𝑙1 ∸ 𝑙𝑒𝑛(𝑒2)).

(m2) {𝑒1, 𝑛𝑙1, 𝑛𝑖𝑙} → 𝑒1.
(m3) {𝑛𝑖𝑙, 0, 𝑒2} → 𝑒2.
(m4) {𝑛𝑖𝑙, 1 + 𝑛𝑙1, (𝑡, 𝑙) ∶∶ 𝑒2} → {𝑛𝑖𝑙, 𝑛𝑙1, 𝑒2}
(m5) {(𝑡, 𝑛) ∶∶ 𝑒1, 1 + 𝑛𝑙1(𝑠, 𝑙) ∶∶ 𝑒2} →

{(𝑡, 𝑛) ∶∶ 𝑒1, 𝑛𝑙1, 𝑒2},
for 𝑛𝑙1 > 𝑛.

(m6) {(𝑡, 𝑛) ∶∶ 𝑒1, 𝑛, (𝑠, 𝑙) ∶∶ 𝑒2} →
(⟦𝑡, 𝑙, (𝑠, 𝑙) ∶∶ 𝑒2⟧, 𝑚) ∶∶ {𝑒1, 𝑛, (𝑠, 𝑙) ∶∶ 𝑒2},
where 𝑚 = 𝑙 + (𝑛 ∸ (𝑙𝑒𝑛(𝑒2) + 1)).

Conversion
and

reduction in
dependently-

typed
calculi

Víctor López
Juan

Matita
Call-by-need
δ-expansion
Coq

λProlog
The suspension
calculus

Tog
Stats

Going
forward
Action plan
Stable names

Tog

Developed by Francesco Mazzoli
Parametrized by several reduction strategies.
Unification as in Agda, modulo issue 1258.
Uses constraints for type-checking.

Time to show some stats

Conversion
and

reduction in
dependently-

typed
calculi

Víctor López
Juan

Matita
Call-by-need
δ-expansion
Coq

λProlog
The suspension
calculus

Tog
Stats

Going
forward
Action plan
Stable names

Plan

1 Benchmark different approaches on Tog
prototype.

2 Implement promising ones on Agda.
3 Profit

Conversion
and

reduction in
dependently-

typed
calculi

Víctor López
Juan

Matita
Call-by-need
δ-expansion
Coq

λProlog
The suspension
calculus

Tog
Stats

Going
forward
Action plan
Stable names

Stable names

Simon Peyton Jones, Simon Marlow, and Conal Elliott.
“Stretching the storage manager: weak pointers and
stable names in Haskell”. In: In Koopman and Clack
[23. Springer Verlag, 1999, pp. 37–58

GC-aware pointer (equality)!
Pros:

100% safe, 100% leak free.
Low overhead.
Same framework implements value-weak hash
tables.

Cons:
Hard to exploit in current implementation.
Evaluating a term changes its stable name.

Conversion
and

reduction in
dependently-

typed
calculi

Víctor López
Juan

Matita
Call-by-need
δ-expansion
Coq

λProlog
The suspension
calculus

Tog
Stats

Going
forward
Action plan
Stable names

Dimensions

Go

Fingerprinting ∅ / Stable names / Hash consing /
Crypto-hash

Unification Lazy/Eager constraint generation.
δ-expansion Eager / Lazy
Memoization ∅ / Subst. / Conversion / Reduction / All
Explicit substitution No / Yes

Intentionally left out
Hashing, λσ-calculus, MVar-based sharing, Byte-code
interpreter

Any thoughts?

	Matita
	Call-by-need
	δ-expansion
	Coq

	λProlog
	The suspension calculus

	Tog
	Stats

	Going forward
	Action plan
	Stable names

